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A wind of streaming data, social data
and unstructured data is knocking at
the door, and we’re starting to let it in.
It’s a scary place at the moment.

Unidentified bank IT executive, as
quoted by The American Banker

Error: cannot allocate vector of size
75.1 Mb

R

Introduction

The last five years have seen an explosion in the amount of data available to social scien-
tists. Thanks to Twitter, blogs, online government databases, and advances in text analysis
techniques, data sets with millions and millions of observations are no longer a rarity (Lohr,
2012). Although a blessing, these extremely large data sets can cause problems for political
scientists working with standard statistical software programs, which are poorly suited to
analyzing big data sets. At best, analyzing massive data sets can result in prohibitively
long computing time; at worst, it can lead to repeated crashing, making anything beyond
calculating the simplest of summary statistics impossible. The volume of data available to
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researchers is, however, growing faster than computational capacities, making developing
techniques for how to handle “Big Data” is essential.

In this article, we describe a few approaches to handling these Big Data problems within
the R programming language, both at the command line prior to R and after we fire up R.1

We show that handling large datasets is about either (1) choosing tools that can shrink the
problem or (2) fine-tuning R to handle massive data files.

Why Big Data Present Big Problems

It is no secret that current statistical software programs are not well equipped to handle
extremely large datasets. R (R Development Core Team, 2012), for example, works by
holding objects in its virtual memory, and big datasets are often larger then the size of the
RAM that is available to researchers using their operating software. Many of these problems
are compounded by the fact that not only do the raw loaded data take up RAM once loaded,
but so do any analyses. Basic functions like lm and glm store multiple copies of the data
within the workspace. Thus, even if the original data set is smaller than the allocated RAM,
once multiple copies of the data are stored (via an lm function, for example), R will quickly
run out of memory.

Purchasing more RAM is an option, as is moving to a server that can allocate more RAM.
In addition, moving from a 32-bit to a 64-bit version of R can alleviate some problems. (Unix-
like systems — e.g, Linux, Mac OS X— impose a 4Gb limit on 32-bit systems and no limit on
64-bit systems. On Windows, the limits are 2Gb and 4Gb for 32-bit and 64-bit respectively.)
However, these fixes largely postpone the inevitable – scholars will (hopefully) continue to
collect even larger datasets and push the boundaries of what is computationally possible.
This will be compounded by running increasing numbers of more sophisticated analyses. In
addition, all R builds have will have a maximum vector length of 231 − 1, or around two
billion. A combination of any of these memory issues will result in the dreaded “cannot
allocate vector size” error, which will swiftly derail a researcher’s attempt at analyzing a
large data set.

First Pass: Subset the Data

As simple as it sounds, the easiest work-around to the Big Data Problem is to avoid it if
possible. After all, data files are often much larger than we need them to be; they usually
contain more variables than we need for our analysis, or we plan to run our models on
subsets of the data. In these cases, loading the excess data into the R workspace only to
purge it (or ignore it) with a few commands later is incredibly wasteful in terms of memory.
A better approach is to remove the excess data from the data file before loading it into R.
This often appears difficult because we are used to performing data manipulation using R

1Here we focus on R, but this problem extends to other memory-based statistical environments, namely
Stata. Other statistical packages, such as SAS and SPSS, have a file-based approach, which avoids some of
these memory allocation issues.
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(this is probably why we are using R in the first place!). Luckily, there are a handful of Unix
command-line utilities that can help parse data files without running into memory issues.

We demonstrate this using a data file called iris.tab, which is tab-delimited and con-
tains many rows. The dataset measures, in centimeters, (1) sepal length and width and (2)
petal length and width for 50 flowers from three species of irises (Fisher, 1936). We can use
the Unix head command to investigate the first ten lines of the data file:

mactwo$ head iris.tab

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

5.1 3.5 1.4 0.2 setosa

4.9 3 1.4 0.2 setosa

4.7 3.2 1.3 0.2 setosa

4.6 3.1 1.5 0.2 setosa

5 3.6 1.4 0.2 setosa

5.4 3.9 1.7 0.4 setosa

4.6 3.4 1.4 0.3 setosa

5 3.4 1.5 0.2 setosa

4.4 2.9 1.4 0.2 setosa

Suppose that we only need the first four numeric variables for our analysis (we don’t care
about the iris species). We can remove the Species variable using the cut utility, which
takes in a data file and a set of column numbers and returns the data file with only those
columns.2 For example, the following command:

mactwo$ head iris.tab | cut -f1 ,2,3,4

will return the data without the Species variable:

Sepal.Length Sepal.Width Petal.Length Petal.Width

5.1 3.5 1.4 0.2

4.9 3 1.4 0.2

4.7 3.2 1.3 0.2

4.6 3.1 1.5 0.2

5 3.6 1.4 0.2

5.4 3.9 1.7 0.4

4.6 3.4 1.4 0.3

5 3.4 1.5 0.2

4.4 2.9 1.4 0.2

A few points of clarification. First, note that we are “piping” the output of the head

command to the cut command to avoid running cut on the entire dataset.3 This is useful
for testing our approach at the command line. Once we have our syntax, we can run cut

on the entire data as follows: cut -f1,2,3,4 iris.tab >> iris-new.tab. Note that this
will create a new file, which may be quite large. Second, the -f1,2,3,4 arugment specifies
which columns to keep and can be specified by ranges such as -f1-4.

2We can also selectively load columns using the R command read.table; however, the approach we
suggest is more efficient and is compatible with the bigmemory package below.

3In Unix environments, the “pipe character” (|) takes the output of one command and passes it as an
input the next command.
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In addition to removing variables, we often want to remove certain rows of the data (say,
if we were running the analysis only on a subset of the data). To do this efficiently on large
text-based data files, we can use awk, which comes standard on most Unix systems. The awk
utility is a powerful data extraction tool, but we will only show its most basic features for
selecting observations from a dataset. The command requires an expression that describes
which rows of the data file to keep. For instance, if we wanted to keep the top row (with
the variable names) and any row with a Sepal.length greater than 5, we could use the
following:

mactwo$ head iris.tab | awk ’NR ==1 || $1 > 5’

This gives the following result:

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

5.1 3.5 1.4 0.2 setosa

5.4 3.9 1.7 0.4 setosa

Here, NR refers to the row number, so that NR == 1 selects the first row of the file, which
contains the variable names. The $ operator refers to column numbers, so that $1 > 5

selects any row where the first column is greater than 5. The || operator simply tells awk
to select rows that match either of the two criteria.

There are many ways to preprocess our data before loading it into R to reduce its size
and make it more manageable. Besides these Unix tools we’ve discussed there are more
complicated approaches, including scripting languages such as Python or relational database
interfaces with R such as sqldf or RODBC. These are more powerful approaches, but often
simple one-line Unix commands can wrangle data as effectively and more efficiently. In
any case, this approach can resolve many of the supposed Big Data problems out in the
wild without any further complications. There are times, though, when Big Data problems
remain, even after whittling away the data to only the necessary bits.

The Bite-Sized-Chunk Approach to Big Data

It’s impossible to eat a big steak in one bite; instead, we cut our steak into smaller pieces
and eat it one bite after another. Nearly all direct fixes to the Big Data conundrum rely on
the same principle: if we need all the data (not just some subsets of it), we can break up the
data into more manageable chunks that are then small enough to fit within the allocated
memory. Essentially, we upload into the workspace only as much of the data as is necessary
to run specific analyses. Indeed, many operations can be done piece-meal or sequentially on
different chunks on data – e.g., a thousand rows a time, or only a few columns. For some
simple calculations, such as the sample mean, this process is straightforward. For others,
though, this is more daunting—how do we piece together regressions from different subsets
of the data?

Fortunately, there are a handful of packages that have facilitated the use of big data in
R and they work by automating and simplifying the bite-sized data approach.4 Generally,

4This bite-sized-chunk approach, sometimes called “split-apply-combine” (Wickham, 2011), has a strong
history in computer science. Google’s MapReduce programming model is essentially the same approach.
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they allow most of the data to stay in the working directory (on a file in the hard drive); this
means that the data do not have to be loaded into the memory (thereby using up valuable
allocated memory). They create an R object within the memory that acts like a matrix

object, but in reality it’s just a way for you to efficiently access different parts of the data
file (still on the hard drive). In addition, they provide intuitive functions that allow users to
access the data and calculate summary statistics of the entire data.

A Romp Through bigmemory

The bigmemory package (Kane and Emerson, 2011), along with its sister packages, allows
users to interact with and analyze incredibly large datasets. To illustrate, we work through
an example using U.S. lending data from 2006. Federal law mandates that all applications
for a real estate mortgage be recorded by the lending agency and reported to the relevant
U.S. agencies (who then make the data publicly available). This results in a wealth of data
– some 11 million observations per year. However, the size of this data means that loading
the data into an R workspace is essentially impossible, let alone running linear or generalized
linear models.

To get started, we load the data into R as a big.matrix object. With large datasets, it is
important to create a “backing file,” which will reduce the amount of memory that R needs
to access the data. To do this, we load the relevant packages and use the read.big.matrix
function:

> library(bigmemory)

bigmemory >= 4.0 is a major revision since 3.1.2; please see package

biganalytics and http://www.bigmemory.org for more information.

> library(biglm)

Loading required package: DBI

> library(biganalytics)

> library(bigtabulate)

> mortgages <- read.big.matrix("allstates.txt", sep = "\t", header = TRUE ,

+ type = "double",

+ backingfile = "allstates.bin",

+ descriptor = "allstates.desc")

The resulting object, mortgages, is a big.matrix object and takes up very little memory in
R. The process of creating this backing file takes around 25-30 minutes with these data, but
after this is complete, it is fast and easy to load the big.matrix object in a fresh R session
using the following:

> library(bigmemory)

bigmemory >= 4.0 is a major revision since 3.1.2; please see package

biganalytics and http://www.bigmemory.org for more information.

> library(biglm)

Loading required package: DBI
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> library(biganalytics)

> library(bigtabulate)

> xdesc <- dget("allstates -clean.desc")

> mortgages <- attach.big.matrix(xdesc)

This process takes just seconds with same low memory overhead.
In many ways, we can interact with big.matrix objects in much the same way we do

with matrix objects:

> dim(mortgages)

[1] 10875481 40

> head(mortgages )[ ,1:7]

ID agency loan.type property loan.purpose occupancy loan.amount

[1,] 1 1 1 1 1 1 36

[2,] 1 1 1 1 1 1 61

[3,] 1 1 1 1 2 1 10

[4,] 1 1 1 1 3 1 76

[5,] 1 1 1 1 3 1 148

[6,] 1 1 1 1 3 1 132

We can see here that this dataset has over 10.8 million observations with 40 variables. Using
functions from the sister package biganalytics (Emerson and Kane, 2010), we can quickly
and easily find summary statistics on different columns:

> mean(mortgages[,"income"])

[1] 100.3027

> median(mortgages[,"income"])

[1] 76

These calculations take just a few seconds on Apple iMac with a 3.06 Ghz Intel Core 2 Duo
processor and 4Gb of RAM. Note that big.matrix objects mimic matrix objects so we
cannot use the mortgages$income syntax as we would with a data.frame.

Our data analyses often require more than simple summary statistics and bigmemory

has a way to efficiently subset data. This is the mwhich command, which returns a vector
of indicies that match a set of criteria similar to the base which command. The func-
tion takes in a big.matrix object, a variable name, a value, and a comparison to perform
on that value. For instance, with a tradition R matrix, we might choose the males with
which(mortgages[,"sex"] == 1), but the syntax is slightly different with a big.matrix:

> median(mortgages[mwhich(mortgages , "sex", 1, "eq"), "loan.amount"])

[1] 141

> median(mortgages[mwhich(mortgages , "sex", 2, "eq"), "loan.amount"])

[1] 127

The first call to mwhich selects the observations with sex equal (eq) to 1. The mwhich

function can compare multiple variables or values at once. This allows us to create complex
cross-tabulations on extremely large datasets with minimal memory or speed overhead.

Finally, the biganalytics also provides a method for passing big.matrix objects to the
biglm function (Lumley, 2011), which efficiently computes ordinary least squares on large
datasets. This approach is similar to running a regression with a normal matrix:
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> mod1 <- biglm.big.matrix(high.rate ~ sex , data = mortgages)

> summary(mod1)

Large data regression model: biglm(formula = formula , data = data , ...)

Sample size = 10875481

Coef (95% CI) SE p

(Intercept) 0.2331 0.2324 0.2338 4e-04 0

sex 0.0371 0.0367 0.0376 2e-04 0

Remarkably, this regression takes less than a minute to run (on all 10.8 million observations!).
In general, the bigmemory suite of functions helps users with extremely large datasets avoid
per-computation memory and speed issues by creating a file-backed version of the data.
Further, they have put together a great set of functions to help users with the most common
statistical tasks. These tasks can be sped up even more by parallel processing through the
foreach package.

Conclusion

As journalists and public intellectuals have noted, the age of “Big Data” has dawned. How-
ever, advances in computational speed and memory size are not moving fast enough to allow
analysis of this data with traditional techniques. To this end, researchers analyzing ex-
tremely large data sets will have to start start using different kinds of approaches – parallel
processing, big data packages. Here, we have reviewed only some techniques in tackling “Big
Data,” but there are others. Ultimately, as the wealth of data only grows, those who can
quickly and easily digest this information will be able to explore new and exciting research
questions; those who can’t will, unfortunately, be left out.
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