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Identiĕcation in panel data

Ignorability conditional on unit

• Sometimes we do not have all of the possible confounders for the effect on the treatment on the out-
come, so it’s not plausible that ignorability holds. Another way to think about this: even conditional on
the covariates, the treatment isn’t quite randomly assigned. Today we’re going to start thinking about
how to estimate effects when the usual ignorability assumption doesn’t hold. Generally, we will look
to other sources of variation to identify our effect.

• When we observe the same units over time, we have new ways to identify the effect of the treatment
on the outcome. Note that simply having panel data does not identify an effect, but it does allow us to
rely on different identifying assumptions.

• Generally, we talk about panel data and time-series cross-sectional data in political science. Panel data
usually refers to situations where the number of time periods is quite short and the number of units
quite high. e NES panel is like this:  respondent asked questions at various points in time over
the course of an election (or multiple elections). TSCS data, on the other hand, has fewer units and
many time periods. e usual application is something like U.S. states over time or Western European
countries over time. For the most part, the issues of causality are the same for these two types of data,
so I will refer to them both as panel data.

• ebasic idea is that ignorability doesn’t hold, conditional on the observed covariates,Yit(a) ̸ ⊥⊥Ait|Xit,
but ignorability might hold conditional on some unobserved, time-constant, variable:

Yit(a) ⊥⊥ Ait|Xit, Ui.

• is type of ignorability gives us an insight: within units, effects are identiĕed. is is because, even if
Ui is unobserved, it is held constant within a unit. us, by performing analyses within the units, we
can control for this unobserved heterogeneity.

Fixed effects estimators

Basic linear ĕxed-effects model

• Let’s say we have units i = 1, . . . , N and time periods t = 1, . . . , T with T ≥ 2, with Yit be the
outcome for unit i in period t. Let Ait be the treatment, similarly deĕned. We have a set of covariates
in each period, as well,Xit, which we deĕne as being “prior” toAit. us, we have something like this:
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• Let Ui be an unobserved unit effects that are functions of observed and unobserved baseline con-
founders, Wi and ηi, respectively. All of these variables are causally prior to t = 1.

• We need some notation to indicate the history of some variables up to time t. We will write these as
Ait = (A1, . . . , At).

• e typical way that we write a ĕxed effect model is as a linear regression:

Yit = X ′
itβ + τ(Ait) + Ui + εit

• A couple of notes: ĕrst, we now write τ as a function since, there are many possible effects that could
be produced by the treatment history. Imagine the case with just two time periods. Now, even with a
binary treatment in each time period, there are four possible combinations of the treatment history:
(,), (,), (,), and (,). us, while we usually have τ(Ait) = τAit, we might also have τ(Ait) =
τ1Ait + τ2Ai,t−1.

• Of couse, with the above regression formula, the key assumptions will be on the relationship between
Ui and εit. When we do not have any lagged dependent variables in Xit, the current practice is to rely
on what is called a strict exogeneity assumption:

E[εit|XiT , AiT , Ui] = 0

• is combining this with the above regression, we get the following conditional expectation function:

E[Yit|XiT , AiT , Ui] = X ′
itβ + τ(Ait) + Ui

• Once we ĕx one of the unobserved unit effects at  (or ĕx the mean at ), we treat the rest of the unit
terms as constants and β and τ(at) are identiĕed. If we have the usual effects, τ(Ait) = τAit, then the
typical way to estimate this ĕxed effect model is using the so-called “within” estimator:

(Yit − Ȳi) = (Xit − X̄i)
′β + τ(Ait − Āi) + (εit − ε̄i)

• Here, the Ȳi refers to the mean of that variable for unit across time. e logic here is fairly straight-
forward: since the unobserve effect is constant over time, subtracting off the mean also subtracts that
unobserved effect. is also demonstrates why the assumption of the ĕxed effects being time-constant
is so important. Otherwise, there would still be a residual function of them caught up in the error term
above.

• Note that ĕrst differencing has the same effect as the within estimator: since the unit effects are time
constant, it doesn’t matter if we subtract off the value from the last period or the mean from all periods.

• e informal proof for this is that under strict exogeneity, themean-differenced errors are uncorrelated
with the treatment or regressors from any time period. us, the mean-differenced treatment and
covariates must also be uncorrelated with the mean-differenced errors. us, we can identify all the
effects.





Lagged dependent variables

• e above strict exogeneity assumption is quite strong. Let’s think about the relationship between
economic interdependence between countries (Ait = 1 if a county dyad is interdependent in period
t) and conĘict severity between countries. en the strict exogeneity assumption implies that a shock
to the conĘict severity is uncorrelated with future values of conĘict severity, economic interdendence
and any covariate we include in the model. us, this assumption rules out the possibility of lagged
dependent variables.

• To seewhy this is the case, imagine thatYi,t−1 was included in the covariates,Xit. Under strict exogene-
ity, the error must be uncorrelated with past and future values of Xit. us, εit must be uncorrelated
with Xi,t+1, which by construction includes Yit. But of course they cannot be uncorrelated because
the error is a component of that value of the dependent variable!

• A weaker assumption that is used in these cases is that of sequential exogeneity, which assumes that
the errors are only uncorrelated with past values. at is, we assume:

E[εit|Xit, Ait, Ui] = 0.

• Unfortunately, this assumption alone does not identify a ĕxed effect regression like the strict exogeneity
does. is is because themean-differenced (or ĕrst-differenced) LDVwill in general be correlated with
the mean- or ĕrst-differenced error. In an extremely simple case (the only covariate is a LDV), you can
see this:

(Yit − Yi,t−1) = β(Yi,t−1 − Yi,t−2) + τ(Ait −Ai,t−1) + (εit − εi,t−1)

• Obviously, the Yi,t−1 induces correlation with the εi,t−1. In order to estimate these types of models
(oen called dynamic panel models), you need to use an instrument. Fortunately, they are generally
given by sequential exogeneity, combined with a few assumptions on the time-series (no serial cor-
relation and no correlation between the initial outcome and future errors). Under these conditions,
the level of the two-period lag, Yi,t−2, is correlated with the ĕrst-differenced LDV, (Yi,t−1 − Yi,t−2),
but uncorrelated with the ĕrst-differenced error (εit − εi,t−1). us, we can use this variable as an
instrument for the LDV in order to identify the parameters of the model.

• e IV approach to dynamic panel models is quite robust, with a large literature ĕnding new/better
sets of instruments to use. Unfortunately, they all share similar weaknesses: the linear modeling as-
sumption and the strong assumptions on the error terms. is approach also focuses on a very speciĕc
type of effect: the contemporaneous effect. More general effects are not generally identiĕed using this
approach.

Treatment effects in ĕxed effects causal models

Basic effects

• When moving from static to dynamic treatments, we need to adjust our notions a bit. Now, we have
the potential for more general effects. Let’s refer to aT as a possible treatment regime/history. It can
take a value in the basis set MT ⊆ {0, 1}T . We will assume that the potential outcomes for some unit
depend on the regime for that unit only, which is equivalent to SUTVA for units. Importantly, this does
not assume SUTVA for time periods within units. is allows us to write the potential outcome under
aT as: Y i(aT ) = (Yi1(aT ), . . . , YiT (aT )).





• We also can make a “no-anticipation” assumption: namely, that the potential outcome in period t only
depends on the values of the treatment up to that point. So, if we have aT = (at, aj>t) and a∗t =
(at, a

∗
j>t), then it must be the case that Yit(aT ) = Yit(a

∗
T ). is allows us to write the potential

outcomes at time t as Yit(at).

• Another complication here is that the time-varying regressors might also be affected by the treatment,
so that we have Xit(at−1).

• In general, we will be interested in average treatment effects:

E[Yt(at)− Yt(a
∗
t )].

Or we might be interested in these effects, conditional on an observed regime:

E[Yt(at)− Yt(a
∗
t )|At ∈ Bt],

where Bt is set of regimes.

Fixed effects causal models

• Tomake progress, wewill develop a causalmodel that are similar in spirit to the ĕxed effects regressions
above. Namely, we will write a linear model for the potential outcome:

Yit(at) = X ′
it(at−1)βc + τc(at) + Ui + εit(at)

• A few things have changed here. First, we write the coefficients with subscripts to indicate that these
parameters may be different than the ĕxed effects regressions above. is is because we want to in-
vestigate when the ĕxed effects regressions will recover the causal parameters. Second, now there is a
potential error, εit(at), which is the error that occurs when the treatment regime is at.

• In order to make progress, we need to make some assumptions about how the errors relate to the
covariates and the unit effects. is is similar to the assumptions we had tomake about the relationship
between the error and covariates with simple regression. And these assumptions will fall into two
categories very similar to the ĕxed effects regression assumptions. First, we can have that the error is
strictly mean independent:

E[εit(at)|{Xi,j(aj−1)}Tj=1, Ui] = 0

• With the strictly mean independence, we have that the error is (mean) independent of the value of the
time-varying covariates under the regime of interest and the unit effects. Again, this would rule out
the dependent variable affecting future values of the time-varying covariates. Under this assumption,
we can write the CEF of the potential outcome as follows:

E[Yit(at)|{Xi,j(aj−1)}Tj=1, Ui] = X ′
it(a1−t)βc + τc(at) + Ui

• e second possible assumption weakens that to simply sequentially mean independent:
E[εit(at)|{Xi,j(aj−1)}Tj=1, Ui] = 0

• is allows us to write the CEF as follows:
E[Yit(at)|{Xi,j(aj−1)}tj=1, Ui] = X ′

it(a1−t)βc + τc(at) + Ui

• We have made a lot of progress here. We have seen that the mean of the outcome conditional on the
treatment regime and the mean of the potential outcome under that regime have similar forms. But,
as always, it might not be the case that the mean of the potential outcomes under a treatment regime
is the same as the mean among those who actually followed that treatment regime.





Treatment effects under the causal models

• We can combine the above causal models with the deĕnition of the effects to simplify the deĕntion of
the effects:

E[Yt(at)− Yt(a
∗
t )] = E[τc(at)− τc(a

∗
t ) + (Xt(at−1)−Xt(a

∗
t−1))

′βc + εit(at)− εit(a
∗
t )]

• Note that in general, the effect of the regime on the outcome depends on how the regime affects the
time-varying regressors. Unless of course, we haveXt(at−1) = Xt(a

∗
t−1), which happens if either the

treatment has no effect on Xt or the two regimes agree up to t− 1: at−1 = a∗t−1.

• ere one other effect we might be interested in, the contemporaneous effect, which is the average
effect of treatment in time t on the outcome in the same time period. at is, we are interested in
the potential outcome if we were to keep your observed treatment regime and set the last period to
be at. We would deĕne the contemporaneous effect as E[Yt(At−1, 1) − Yt(At−1, 0)], where now the
expectation also averages across the previous treatment history. If each treatment status is available at
each time period, then the this deĕnition would be:

E

∑
Mt−1

[(τc(at−1, 1)− τc(at−1, 0)]Pr[At−1 = at−1]


• us, thewaywe compute the contemporaneous effect of treatment is to estimate the effect of treatment

in time t for each treatment regime up to time t − 1. en, we simply average those effect by the
distribution of the those treatment regimes.

Indentiĕcation of treatment effects from ĕxed effect regression models

• In order to identify the effects from the last section, we need to make assumptions on the relationship
between the treatment and the potential outcomes. We can give sufficient conditions for identiĕcation
from the usual ĕxed-effect regressions.

• Condition : sequential randomization:{
Xj(aj−1), Yj(aj)

}T

j=t+1
⊥⊥ At|Xt, At−1 = at−1, U

• is sequential randomization assumption implies the following:

E[Yt|Xt, At = at, U ] = E[Yt(at)|{Xm(am−1)}tm=1, U ]

• Further, if the above sequential mean independence assumption holds on the causal model, then we
have: E[εt(at)|At−1 = at−1] = 0. us, when these two conditions hold, we have β = βc and
τ(at) = τc(at).

• One thing to note here is that the conditions on the potential error are conditional on observed treat-
ment history, At−1. us, even if there was no effect of the treatment on the time-varying regressors,
we would not be able to identify effects of treamtent regimes that differed before t.

• Condition : complete randomization, which is sequential randomization plus:





Yt(at) ⊥⊥ At+1, . . . , AT |{Xm(am−1)}tm=1, At = at, U

• is (much stronger) condition implies:

E[Yt|XT , AT = aT , U ] = E[Yt(at)|{Xm(am−1)}Tm=1, U ]

• If we have, in addition, the strict mean independence from above, then we get that E[εt(at)|At =
at] = 0. us, the usual ĕxed effects regression identiĕes the causal parameters, τc and βc. Note that
the two conditions combined basically require a completely randomized treatment.

• If either of these conditions holds, we can identify those parameters and use them to identify the effect
of a treatment in time t, conditional on the treatment histories being the same up to t − 1. us, this
also implies we can identify the contemporaneous effects as well.

• Why is this? Remember the formula for the effect:

E[Yt(at)− Yt(a
∗
t )] = E[τc(at)− τc(a

∗
t ) + (Xt(at−1)−Xt(a

∗
t−1))

′βc + εit(at)− εit(a
∗
t )]

• While it is true that we can identify τc and βc and under the assumptions the error terms have  mean,
we have not identiĕed the effect of treatment on the time-varying confounders, (Xt(at−1)−Xt(a

∗
t−1)).

We could put restrictions on the effect, such as the it only depends on the number of previously treated
periods or that there is “transience” in the sense that Xt(at) = Xt(a

∗
t ) if at and a∗t agree for the last k

periods.

What do ĕxed effects estimate?

• What this tells us is that with a properly speciĕed ĕxed-effect model, the best we can hope to estimate
is a version of the contemporaneous effect of treatment. at is, we can identify the effect of the last
period, conditional on the past being the same.

• What ĕxed effects models cannot give us are “cumulative effects” unless we are willing to make even
stronger assumptions on the data.

• Many times in appliedwork, folks assume there are no cumulative effects (either explicitly or implicitly)
and so their ĕxed effects models are “ĕne” (as long as randomization within unit, linearity, and strict
exogeneity hold). is might be better than nothing, though.

• What do we do? Well, we’ll look at this again in a different context in a few weeks when we talk about
dynamic causal inference.




