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Where are we? Where are we going?

• Last few weeks: linear regression at its most general, matrix form
• This week: effects that vary between groups and other loose ends
• Next week: troubleshooting the linear model

interactions
Data

• Data comes from Fish (2002), “Islam and Authoritarianism.”
• Basic relationship: does more economic development lead tomore democracy?
• We measure economic development with log GDP per capita
• We measure democracy with a Freedom House score, 1 (less free) to 7 (more

free)

load(”FishData.RData”)

plot(FishData$income, FishData$fhrev, ylab = ”Democracy”, xlab = ”Log GDP per capita”,

pch = 19, bty = ”n”, col = ifelse(FishData$muslim == 1, ”indianred”, ”dodgerblue”))
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• We might want to control for whether or not the country’s largest religion is
Islam.

• Why? Fish argues that Muslim countries are less likely to be democratic no
matter their economic development.

• Let’s put this to data and control for a binary variable muslim that is 1 when Islam
is the largest religion in a country and 0 otherwise:

mod <- lm(fhrev ~ income + muslim, data = FishData)

summary(mod)

##

## Call:

## lm(formula = fhrev ~ income + muslim, data = FishData)

##

## Residuals:

## Min 1Q Median 3Q Max

## -3.3961 -0.8276 0.2804 0.9425 3.2467

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 0.1887 0.5560 0.339 0.735

## income 1.3970 0.1629 8.576 1.31e-14 ***

## muslim -1.6827 0.2379 -7.074 5.82e-11 ***

## ---
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## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 1.282 on 146 degrees of freedom

## Multiple R-squared: 0.5216, Adjusted R-squared: 0.515

## F-statistic: 79.58 on 2 and 146 DF, p-value: < 2.2e-16

• Since muslim here is a binary variable, we can plot the two parallel regression
lines implied by this model:

plot(FishData$income, FishData$fhrev, ylab = ”Democracy”, xlab = ”Log GDP per capita”,

pch = 19, bty = ”n”, col = ifelse(FishData$muslim == 1, ”indianred”, ”dodgerblue”))

abline(a = coef(mod)[1], b = coef(mod)[2], col = ”dodgerblue”, lwd = 3)

abline(a = coef(mod)[1] + coef(mod)[3], b = coef(mod)[2], col = ”indianred”,

lwd = 3)
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• But looking at the data here, we might notice that the red line for Muslim coun-
tries does not fit the lines very well. Maybe there is a different relationship
between income and democracy in Muslim and non-Muslim countries.

Interaction between binary and continuous variables

• Let Zi be binary

• In this case, Zi = 1 for the country being Muslim
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• We can add another covariate to the baseline model that allows the effect of
income to vary by Muslim status.

• This covariate is called an interaction term and it is the product of the two
marginal variables of interest:

incomei ×mulsimi

• Here is the model with the interaction term:

Ŷi = β̂0 + β̂1Xi + β̂2Zi + β̂3XiZi

• Literally this last term is just a new covariate that is the Xi multiplied by Zi.

Example of binary interaction terms

• In R, we simply add a new term to the regression which is first:second where
first and second are the names of marginal variables:

mod.int <- lm(fhrev ~ income + muslim + income:muslim, data = FishData)

summary(mod.int)

##

## Call:

## lm(formula = fhrev ~ income + muslim + income:muslim, data = FishData)

##

## Residuals:

## Min 1Q Median 3Q Max

## -3.8460 -0.5705 0.0940 0.8517 2.6307

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -1.3489 0.5400 -2.498 0.0136 *

## income 1.8592 0.1590 11.695 < 2e-16 ***

## muslim 5.7413 1.1338 5.064 1.23e-06 ***

## income:muslim -2.4267 0.3642 -6.662 5.23e-10 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 1.125 on 145 degrees of freedom

## Multiple R-squared: 0.6337, Adjusted R-squared: 0.6261

## F-statistic: 83.61 on 3 and 145 DF, p-value: < 2.2e-16
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• Let’s look at the design matrix to see what this looks like:

head(model.matrix(mod.int))

## (Intercept) income muslim income:muslim

## 1 1 2.925312 1 2.925312

## 2 1 3.214314 1 3.214314

## 3 1 2.824126 0 0.000000

## 4 1 3.762078 0 0.000000

## 5 1 3.187803 0 0.000000

## 6 1 4.435542 0 0.000000

• Note that it is easier and better to write the interaction term as first*second,
which adds each variable and its interaction to the model:

mod.int <- lm(fhrev ~ income * muslim, data = FishData)

summary(mod.int)

##

## Call:

## lm(formula = fhrev ~ income * muslim, data = FishData)

##

## Residuals:

## Min 1Q Median 3Q Max

## -3.8460 -0.5705 0.0940 0.8517 2.6307

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -1.3489 0.5400 -2.498 0.0136 *

## income 1.8592 0.1590 11.695 < 2e-16 ***

## muslim 5.7413 1.1338 5.064 1.23e-06 ***

## income:muslim -2.4267 0.3642 -6.662 5.23e-10 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 1.125 on 145 degrees of freedom

## Multiple R-squared: 0.6337, Adjusted R-squared: 0.6261

## F-statistic: 83.61 on 3 and 145 DF, p-value: < 2.2e-16
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Two lines in one regression

• How can we interpret this model?

• We’ll repeat our exercise from a few weeks ago and plug in the two possible
values of Zi

• When Zi = 0:

Ŷi = β̂0 + β̂1Xi + β̂2Zi + β̂3XiZi

= β̂0 + β̂1Xi + β̂2 × 0 + β̂3Xi × 0

= β̂0 + β̂1Xi

• When Zi = 1:

Ŷi = β̂0 + β̂1Xi + β̂2Zi + β̂3XiZi

= β̂0 + β̂1Xi + β̂2 × 1 + β̂3Xi × 1

= (β̂0 + β̂2) + (β̂1 + β̂3)Xi

Example interpretation of the coefficients

• Let’s review what we’ve seen so far:

Intercept for Xi Slope for Xi

Non-Muslim country (Zi = 0) β̂0 β̂1
Muslim country (Zi = 1) β̂0 + β̂2 β̂1 + β̂3

plot(FishData$income, FishData$fhrev, ylab = ”Democracy”, xlab = ”Log GDP per capita”,

pch = 19, bty = ”n”, col = ifelse(FishData$muslim == 1, ”indianred”, ”dodgerblue”))

abline(a = coef(mod.int)[1], b = coef(mod.int)[2], col = ”dodgerblue”, lwd = 3)

abline(a = coef(mod.int)[1] + coef(mod.int)[3], b = coef(mod.int)[2] + coef(mod.int)[4],

col = ”indianred”, lwd = 3)
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General interpretation of the coefficients

• β̂0: average value of Yi when both Xi and Zi are equal to 0
• β̂1: a one-unit change in Xi is associated with a β̂1-unit change in Yi when
Zi = 0

• β̂2: average difference in Yi between Zi = 1 group and Zi = 0 group when
Xi = 0

• β̂3: change in the effect of Xi on Yi between Zi = 1 group and Zi = 0

Lower order terms

• Always include the marginal effects (sometimes called the lower order terms)
• Imagine we omitted the lower order term for muslim:

wrong.mod <- lm(fhrev ~ income + income:muslim, data = FishData)

summary(wrong.mod)

##

## Call:

## lm(formula = fhrev ~ income + income:muslim, data = FishData)

##

## Residuals:

## Min 1Q Median 3Q Max

## -3.5338 -0.7332 0.2524 0.8582 3.0619
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##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -0.04646 0.51333 -0.091 0.928

## income 1.48368 0.15202 9.760 < 2e-16 ***

## income:muslim -0.61372 0.07255 -8.460 2.56e-14 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 1.217 on 146 degrees of freedom

## Multiple R-squared: 0.5689, Adjusted R-squared: 0.563

## F-statistic: 96.34 on 2 and 146 DF, p-value: < 2.2e-16

plot(FishData$income, FishData$fhrev, ylab = ”Democracy”, xlab = ”Log GDP per capita”,

pch = 19, bty = ”n”, col = ifelse(FishData$muslim == 1, ”indianred”, ”dodgerblue”),

xlim = c(-0.5, 4.5), ylim = c(-0.5, 7))

abline(a = coef(wrong.mod)[1], b = coef(wrong.mod)[2], col = ”dodgerblue”, lwd = 3)

abline(a = coef(wrong.mod)[1], b = coef(wrong.mod)[2] + coef(wrong.mod)[3],

col = ”indianred”, lwd = 3)

abline(v = 0, col = ”grey50”)
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• What’s the problem here? We’ve restricted the intercepts to be the same for both
models:
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Ŷi = β̂0 + β̂1Xi + 0× Zi + β̂3XiZi

Intercept for Xi Slope for Xi

Non-Muslim country (Zi = 0) β̂0 β̂1
Muslim country (Zi = 1) β̂0 + 0 β̂1 + β̂3

• Basically, dropping the lower order term implies that there is no difference be-
tween Muslims and non-Muslims when income is 0

• Or, practically, that the intercept is the same for the two groups, but the slopes
differ. Distorts slope estimates.

• Very rarely justified.

Interaction between two continuous variables

• Now let Zi be continuous

• Zi is the percent growth in GDP per capita from 1975 to 1998

• Is the effect of economic development for rapidly developing countries higher
or lower than for stagnant economies?

• We can still define the interaction:

incomei × growthi

• And include it in the regression:

Ŷi = β̂0 + β̂1Xi + β̂2Zi + β̂3XiZi

Example of continuous interaction

mod.cont <- lm(fhrev ~ income * growth, data = FishData)

summary(mod.cont)

##

## Call:

## lm(formula = fhrev ~ income * growth, data = FishData)

##

## Residuals:

## Min 1Q Median 3Q Max
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## -5.0018 -0.9356 0.2241 0.9604 2.8338

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -0.1066 0.6225 -0.171 0.8643

## income 1.2922 0.1941 6.659 5.33e-10 ***

## growth -0.6172 0.2383 -2.590 0.0106 *

## income:growth 0.2395 0.0753 3.180 0.0018 **

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 1.4 on 145 degrees of freedom

## Multiple R-squared: 0.4332, Adjusted R-squared: 0.4215

## F-statistic: 36.95 on 3 and 145 DF, p-value: < 2.2e-16

head(model.matrix(mod.cont))

## (Intercept) income growth income:growth

## 1 1 2.925312 -0.8 -2.3402497

## 2 1 3.214314 0.2 0.6428628

## 3 1 2.824126 -1.6 -4.5186013

## 4 1 3.762078 0.6 2.2572469

## 5 1 3.187803 -6.6 -21.0394974

## 6 1 4.435542 2.2 9.7581919

Interpretation

• With a continuous Zi, we can have more than two values that it can take on:

Intercept for Xi Slope for Xi

Zi = 0 β̂0 β̂1
Zi = 0.5 β̂0 + β̂2 × 0.5 β̂1 + β̂3 × 0.5

Zi = 1 β̂0 + β̂2 × 1 β̂1 + β̂3 × 1

Zi = 5 β̂0 + β̂2 × 5 β̂1 + β̂3 × 5

General interpretation

Ŷi = β̂0 + β̂1Xi + β̂2Zi + β̂3XiZi

• The coefficient β̂1 measures how the predicted outcome varies inXi whenZi =
0.
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• The coefficient β̂2 measures how the predicted outcome varies inZi whenXi =
0

• The coefficient β̂3 is the change in the effect of Xi given a one-unit change in
Zi:

∂E[Yi|Xi, Zi]

∂Xi
= β1 + β3Zi

• The coefficient β̂3 is the change in the effect of Zi given a one-unit change in
Xi:

∂E[Yi|Xi, Zi]

∂Zi
= β2 + β3Xi

Hypothesis tests

Ŷi = β̂0 + β̂1Xi + β̂2Zi + β̂3XiZi

• Due to sampling variation, the two groups will never have the exact same slope.
• But how do we asses if the differences in the slopes are “big enough” for us to

say that the effect varies by group?
• We can test whether or not the effects for the two groups are different by testing

the null hypothesis H0 : β3 = 0

β̂3

ŜE[β̂3]

Standard errors for marginal effects

• What if we want to get a standard error for the effect of Xi at some level of Zi?

• We already saw that β̂1 is the effect when Zi = 0. What about other values of
Zi?

• To calculate the sampling variances (and thus the SEs), we need to use the prop-
erties of variances. Here is the expression

V
(
∂E[Yi|Xi, Zi]

∂Xi

)
= V(β̂1 + Ziβ̂3)

= V[β̂1] + Z2
i V[β̂3] + 2ZiCov[β̂1, β̂3]

• The variances here are the usual variances and the Cov[β̂1, β̂3] is the covariance
between the estimator of the two coefficients (we’ll learnmore about this soon).
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• Let’s calculate the SE for the effect of income for a Muslim country. We can use
the vcov() function to get the variances and covariances (more on this in the
next few weeks):

## SE of effect of income at muslime = 1

var.inter <- vcov(mod.int)[”income”, ”income”] + 1^2 * vcov(mod.int)[”income:muslim”,

”income:muslim”] + 2 * 1 * vcov(mod.int)[”income”, ”income:muslim”]

sqrt(var.inter)

## [1] 0.3277283

## SE when muslim = 0

sqrt(vcov(mod.cont)[”income”, ”income”])

## [1] 0.1940696

Recentering for interaction terms

• A trick for getting R to calculate the standard errors for you is to recenter the
variable so that 0 corresponds to the value you want to estimate.

• So if we wanted to estimate the effect of being a Muslim country with the asso-
ciated SEs, we could use 1− Zi in place of Zi:

Yi = β0 + β1Xi + β2(1− Zi) + β3Xi(1− Zi) + ui

• Now, β̂1 is the slope on Xi when 1− Zi = 0, or, rearranging, when Zi = 1.
• We “tricked” R into calculating the standard errors for us:

summary(lm(fhrev ~ income * I(1 - muslim), data = FishData))

##

## Call:

## lm(formula = fhrev ~ income * I(1 - muslim), data = FishData)

##

## Residuals:

## Min 1Q Median 3Q Max

## -3.8460 -0.5705 0.0940 0.8517 2.6307

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)
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## (Intercept) 4.3924 0.9969 4.406 2.03e-05 ***

## income -0.5675 0.3277 -1.732 0.0855 .

## I(1 - muslim) -5.7413 1.1338 -5.064 1.23e-06 ***

## income:I(1 - muslim) 2.4267 0.3642 6.662 5.23e-10 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 1.125 on 145 degrees of freedom

## Multiple R-squared: 0.6337, Adjusted R-squared: 0.6261

## F-statistic: 83.61 on 3 and 145 DF, p-value: < 2.2e-16

• Notice that the SE is the same as we calculated before.

tests of multiple hypotheses
Review of t-tests

• Null hypothesis:
H0 : βk = 0

• Alternative hypothesis:
HA : βk ̸= 0

• Test statistic (t-statistic):

t =
β̂k

ŜE[β̂k]

• Has a N(0, 1) distribution in large samples (under Assumptions 1-5) and a
tn−(k+1) distribution under Assumptions 1-6 (when errors are conditionally
Normal)

Joint null hypotheses

Yi = β0 + β1Xi + β2Zi + β3XiZi

H0 : β1 = 0 and β3 = 0

HA : β1 ̸= 0 or β3 ̸= 0

• How can we test this null hypothesis?
• We will compare the predictive power of the model under the null and the

model under the alternative
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Restricted versus unrestricted models

• Unrestricted model (alternative is true):

Yi = β0 + β1Xi + β2Zi + β3XiZi

• Estimates:
Ŷi = β̂0 + β̂1Xi + β̂2Zi + β̂3XiZi

• SSR from unrestricted model:

SSRu =
n∑

i=1

(Yi − Ŷi)
2

• Restricted model (null is true):

Yi = β0 + β1Xi + β2Zi + β3XiZi

= β0 + 0×Xi + β2Zi + 0×XiZi

Yi = β0 + β2Zi

• Estimates:
Ỹi = β̃0 + β̃1Zi

• SSR from restricted model model:

SSRr =
n∑

i=1

(Yi − Ỹi)
2

• If the null is true, then SSRr and SSRu should only be different due to sam-
pling variation.

• The bigger the reduction in the prediction errors between SSRr and SSRu,
the less plausible is the null hypothesis.

F statistic

F =
(SSRr − SSRu)/q

SSRu/(n− k − 1)

• (SSRr−SSRu): the increase in the variation in the residuals whenwe remove
those βs

• q = number of restrictions (numerator degrees of freedom)
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• n− k − 1: denominator/unrestricted degrees of freedom
• Intuition:

increase in prediction error
original prediction error

• Each of these is scaled by the degrees of freedom

F statistic in R

ur.mod <- lm(fhrev ~ income * growth, data = FishData)

r.mod <- lm(fhrev ~ growth, data = FishData)

anova(r.mod, ur.mod)

## Analysis of Variance Table

##

## Model 1: fhrev ~ growth

## Model 2: fhrev ~ income * growth

## Res.Df RSS Df Sum of Sq F Pr(>F)

## 1 147 452.13

## 2 145 284.09 2 168.04 42.885 2.337e-15 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

F distribution

curve(df(x, 2, 100), xlim = c(0, 4), lwd = 3, col = ”grey50”, bty = ”n”, las = 1,

ylab = ”f(x)”, xlab = ”x”)

curve(df(x, 4, 100), xlim = c(0, 4), lwd = 3, col = ”dodgerblue”, add = TRUE)

curve(df(x, 8, 100), xlim = c(0, 4), lwd = 3, col = ”indianred”, add = TRUE)

legend(”topright”, legend = c(”q = 2, n - k - 1 = 100”, ”q = 4, n - k - 1 = 100”,

”q = 8, n - k - 1 = 100”), lwd = 3, col = c(”grey50”, ”dodgerblue”, ”indianred”),

bty = ”n”)
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• Ratio of two χ2 (Chi-squared) distributions

The F test

• The F test will test this null hypothesis, but what is the sampling distribution of
this F statistic?

• Very similar to the t-test. We will assume either assumptions 1-5 and in large
samples, or under 1-6 (including Normality).

• With these assumptions, when the null is true, then we have:

(SSRr − SSRu)/q

SSRu/(n− k − 1)
∼ Fq,n−(k+1)

• Under the null hypothesis, we know that the F statistic follows an F distribution
with degrees of freedom q and n− (k + 1).

• Thus, we can perform a test of the null hypothesis by comparing our observed
test statistic to the distribution of the statistic under the null.

• The F distribution tells us how much of a relative increase in the SSR we should
expect if we were to add irrelevant variables to the model.

• If our calculated F statistic is large relative to the null distribution, then this
means that there is more predictive power (bigger reductions in the SSR) than
we would expect by random chance.

• To conduct the test, we simply choose an α, which has the same interpretation
as always: the proportion of false positives you are willing to accept.

• Then we calculate the rejection region for the test. All F-tests are one-sided
tests. Why? Because we only want to reject when the added covariates increase
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our predictive power (when the SSR goes up) and this is when the F statistic is
big.

• So the rejection region is going to be the regionF > c, such thatP(F > c) = α
• We can get this from R using the qf() function:

qf(0.05, 2, 100, lower.tail = FALSE)

## [1] 3.087296

• We might also want to calculate p-values. These would be the probability of
observing an F-statistic this large or larger given the null hypothesis is true.
This is just the proportion of the distribution above the observed F-statistic.

• We can calculate this in R using the pf() function:

pf(5.2, 2, 100, lower.tail = FALSE)

## [1] 0.00710471

F statistic for all variables

• Often, you’ll an F-statistic reported along with the regression.
• This usually tests the null hypothesis of all the coefficients except the intercept

being 0.
• In that case, the restricted model is just:

Yi = β0 + ui

• And the estimate here would just be sample mean (β̂0 = Y )
• The SSRr then would just be the sampling variation in Y :

SSRf =

n∑
i=1

(Yi − Y )2

Example of F-test for all variables

summary(ur.mod)
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##

## Call:

## lm(formula = fhrev ~ income * growth, data = FishData)

##

## Residuals:

## Min 1Q Median 3Q Max

## -5.0018 -0.9356 0.2241 0.9604 2.8338

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -0.1066 0.6225 -0.171 0.8643

## income 1.2922 0.1941 6.659 5.33e-10 ***

## growth -0.6172 0.2383 -2.590 0.0106 *

## income:growth 0.2395 0.0753 3.180 0.0018 **

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 1.4 on 145 degrees of freedom

## Multiple R-squared: 0.4332, Adjusted R-squared: 0.4215

## F-statistic: 36.95 on 3 and 145 DF, p-value: < 2.2e-16

Connection to t tests

• What about an F-test with just one coefficient equal to zero? H0 : β1 = 0
• We already can do this with an t-test. Is there a connection to the F-test?
• Yes, it turns out that the F-statistic for a single restriction is just the square of

the t-statistic:

F = t2 =

(
β̂1

ŜE[β̂1]

)2

Multiple testing

• If we test all of the coefficients separately with a t-test, then we should expect
that 5% of them will be significant just due to random chance.

• Illustration: randomly draw 21 variables, and run a regression of the first vari-
able on the rest.

• By design, no effect of any variable on any other, butwhenwe run the regression:
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set.seed(2138)

noise <- data.frame(matrix(rnorm(2100), nrow = 100, ncol = 21))

summary(lm(noise))

##

## Call:

## lm(formula = noise)

##

## Residuals:

## Min 1Q Median 3Q Max

## -3.1437 -0.5522 0.0697 0.6096 1.8470

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -0.0280393 0.1138198 -0.246 0.80605

## X2 -0.1503904 0.1121808 -1.341 0.18389

## X3 0.0791578 0.0950278 0.833 0.40736

## X4 -0.0717419 0.1045788 -0.686 0.49472

## X5 0.1720783 0.1140017 1.509 0.13518

## X6 0.0808522 0.1083414 0.746 0.45772

## X7 0.1029129 0.1141562 0.902 0.37006

## X8 -0.3210531 0.1206727 -2.661 0.00945 **

## X9 -0.0531223 0.1079834 -0.492 0.62412

## X10 0.1801045 0.1264427 1.424 0.15827

## X11 0.1663864 0.1109471 1.500 0.13768

## X12 0.0080111 0.1037663 0.077 0.93866

## X13 0.0002117 0.1037845 0.002 0.99838

## X14 -0.0659690 0.1122145 -0.588 0.55829

## X15 -0.1296539 0.1115753 -1.162 0.24872

## X16 -0.0544456 0.1251395 -0.435 0.66469

## X17 0.0043351 0.1120122 0.039 0.96923

## X18 -0.0807963 0.1098525 -0.735 0.46421

## X19 -0.0858057 0.1185529 -0.724 0.47134

## X20 -0.1860057 0.1045602 -1.779 0.07910 .

## X21 0.0021111 0.1081179 0.020 0.98447

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 0.9992 on 79 degrees of freedom
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## Multiple R-squared: 0.2009, Adjusted R-squared: -0.00142

## F-statistic: 0.993 on 20 and 79 DF, p-value: 0.4797

• Notice that out of 20 variables, one of the variables is significant at the 0.05 level
(in fact, at the 0.01 level).

• But this is exactly what we expect: 1/20 = 0.05 of the tests are false positives at
the 0.05 level

• Also note that 2/20 = 0.1 are significant at the 0.1 level. Totally expected!

• But notice the F-statistic: the variables are not jointly significant

nonlinear functional forms
Logs of random variables

• We can account for non-linearity in Xi in a couple of ways
• One way: transform Xi or Yi using the natural logarithm
• Useful when Xi or Yi are positive and right-skewed
• Changes the interpretation of β1:

– Regress log(Yi) on Xi → 100 × β1 ≈ percent increase in Yi associated
with a one-unit increase in Xi

– Regress log(Yi) on log(Xi) → β1 ≈ percentage increase in Yi associated
with a one percent increase in Xi

– Only useful for small increments, not for discrete r.v

Raw scales
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Log scale for Settler mortality
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Log scale for GDP
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Log scale for both
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• Handy chart for interpreting logged variables:

Model Equation β1 Interpretation
Level-Level Y = β0 + β1X 1-unit ∆X ⇝ β1∆Y
Log-Level log(Y ) = β0 + β1X 1-unit ∆X ⇝ 100× β1%∆Y
Level-Log Y = β0 + β1 log(X) 1% ∆X ⇝ (β1/100)∆Y
Log-Log log(Y ) = β0 + β1 log(X) 1% ∆X ⇝ β1%∆Y

Adding a squared term

• Another approach: model relationship as a polynomial

• Add a polynomial of Xi to account for the non-linearity:

Ŷi = β̂0 + β̂1Xi + β̂2X
2
i

• Similar to an “interaction” with itself: marginal effect ofXi varies as a function
of Xi:

∂E[Yi|Xi]

∂Xi
= β1 + β2Xi

quad.mod <- lm(logpgp95 ~ raw.mort + I(raw.mort^2), data = ajr)

summary(quad.mod)

##

## Call:

## lm(formula = logpgp95 ~ raw.mort + I(raw.mort^2), data = ajr)
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##

## Residuals:

## Min 1Q Median 3Q Max

## -2.43698 -0.66321 0.00788 0.65436 1.63024

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 8.639e+00 1.378e-01 62.687 < 2e-16 ***

## raw.mort -3.616e-03 6.638e-04 -5.447 5.77e-07 ***

## I(raw.mort^2) 1.091e-06 2.623e-07 4.157 8.19e-05 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 0.884 on 78 degrees of freedom

## (82 observations deleted due to missingness)

## Multiple R-squared: 0.3211, Adjusted R-squared: 0.3037

## F-statistic: 18.45 on 2 and 78 DF, p-value: 2.755e-07

• Plotting the results (see handout for R code):
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