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Where are we? Where are we going?

• For every week on causal inference, we have identified a
different source of exogenous variation:

• Message: simply having panel data does not identify an effect,
but it does allow us to rely on different identifying
assumptions.
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Ladd/Lenz data
• Do newspaper endorsements affect reader’s votes?
• Problem: people might read newspapers because of the

underlying political positions.
▶ Liberals read the NYT, conservatives read the WSJ

• Ladd and Lenz look at British newspapers that switched their
endorsement to the Labour party between 1992 and 1997.

• Compare the voting trends for readers of endorsement
switching papers vs. non-switching papers.

labour <- foreign::read.dta(”LaddLenz.dta”, convert.factors = FALSE)

head(labour[, c(”tolabor”, ”vote_l_92”, ”vote_l_97”)])

## tolabor vote_l_92 vote_l_97

## 1 0 1 1

## 2 0 1 0

## 3 0 0 0

## 4 0 1 1

## 5 0 1 1
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1/ Basic differences-
in-differences
model
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Setup

• Basic setup: two groups, two time periods.
• At 𝑡 = 0, neither group is treated and in period 𝑡 = 1, one (and

only one) of the groups is treated.
• Differences: changes in treated group from 𝑡 = 0 to 𝑡 = 1

▶ Problem: Might be secular changes in the outcome

• Differences in differences (diff-in-diff, DID, DD): difference
between 𝑡 = 0 to 𝑡 = 1 changes in treatment and control
groups

▶ Resolution: changes in the control group identifies the secular
trend

• Examples:
▶ Minimum wage changes in NJ with PA as control (Card and

Krueger)
▶ Effect of artillery shelling on insurgent attacks (Lyall)
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Panel versus two cross sections

• 𝑌𝑖𝑔𝑡 is the outcome for unit 𝑖 in group 𝑔 at time 𝑡.
• 𝐺𝑖 = 1 are those that are treated at 𝑡 = 1 and 𝐺𝑖 = 0 for those

that are always untreated
▶ 𝐺𝑖 = 1 for NJ since the minimum wage is enacted there.

• DID can be applied with panel data or two cross-sections.
• Panel:

▶ 𝑌𝑖𝑔𝑡 measured for all 𝑖 at both 𝑡.
▶ Could calculate individual changes: 𝑌𝑖𝑔1 − 𝑌𝑖𝑔0
▶ Ladd/Lenz data is of this variety.

• Cross-sections:
▶ 𝑌𝑖𝑔𝑡 means that unit 𝑖 is only measured at 𝑡
▶ 𝑌𝑖𝑔1 means that 𝑌𝑖𝑔0 is not observed.
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Potential outcomes approach to DID

• 𝑌𝑖𝑔𝑡(𝑑) is the potential outcome under treatment 𝑑 at time 𝑡.
• Again, the individual causal effect is just 𝑌𝑖𝑔𝑡(1) − 𝑌𝑖𝑔𝑡(0).
• Treatment status in each period:

▶ No treatment in the first period for either group: 𝐷𝑖𝑔0 = 0
▶ In treated group, 𝐺𝑖 = 1⇝ 𝐷𝑖𝑔1 = 1
▶ In control group, 𝐺𝑖 = 0⇝ 𝐷𝑖𝑔1 = 0

• Consistency: 𝑌𝑖𝑡 = 𝐷𝑖𝑔𝑡𝑌𝑖𝑔𝑡(1) + (1 − 𝐷𝑖𝑔𝑡)𝑌𝑖𝑔𝑡(0)
▶ All control p.o.s in first period: 𝑌𝑖𝑔0(0) = 𝑌𝑖𝑔0
▶ In treated group: 𝐺𝑖 = 1⇝ 𝑌𝑖11 = 𝑌𝑖11(1)
▶ In control group: 𝐺𝑖 = 0⇝ 𝑌𝑖01 = 𝑌𝑖01(0)
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Constant effects linear DID model
• Start with constant effects linear model:

𝔼[𝑌𝑖𝑡(1) − 𝑌𝑖𝑡(0)] = 𝜏
• Linear separable model:

𝔼[𝑌𝑖𝑡(0)] = 𝛿𝑡 + 𝛼𝑔

• Consistency plus these assumptions gives us:
𝑌𝑖𝑔𝑡 = 𝛿𝑡 + 𝜏𝐷𝑖𝑔𝑡 + 𝛼𝑔 + 𝜂𝑖𝑡

• Parameters:
▶ Period effect: 𝛿𝑡
▶ Group effect 𝛼𝑔
▶ Transitory shock/idiosyncratic error, 𝜂𝑖𝑡, with 𝔼[𝜂𝑖𝑡] = 0

• Without further assumptions, 𝜏 not identified because
𝐺𝑖 = 𝐷𝑖𝑔1 might be correlated with shocks:

Cov(𝐺𝑖, 𝛼𝑔) ≠ 0
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Baseline trends

• Baseline trend without treatment:

𝑌𝑖𝑔1(0) − 𝑌𝑖𝑔0(0) = (𝛿1 − 𝛿0) + (𝜂𝑖1 − 𝜂𝑖0)

• Assumption Idiosyncratic errors are also independent of the
treatment:

𝔼[𝜂𝑖1|𝐺𝑖] = 𝔼[𝜂𝑖0|𝐺𝑖] = 0
• Baseline trends are independent of 𝐺𝑖:

𝔼[𝑌𝑖𝑔1(0) − 𝑌𝑖𝑔0(0)|𝐺𝑖 = 1] = (𝛿1 − 𝛿0) + 𝔼[(𝜂𝑖1 − 𝜂𝑖0)|𝐺𝑖]
= (𝛿1 − 𝛿0) + 𝔼[(𝜂𝑖1 − 𝜂𝑖0)]
= (𝛿1 − 𝛿0)
= 𝔼[𝑌𝑖𝑔1(0) − 𝑌𝑖𝑔0(0)]
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Common trends in a graph
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Ladd/Lenz plot
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Identification

• Remember that we are comparing 𝑡 = 1 to 𝑡 = 0.
• With this assumption, we can rewrite the above model as the

following:

𝑌𝑖𝑔𝑡 = 𝜇 + 𝛿𝟙(𝑡 = 1) + 𝛾𝐺𝑖 + 𝜏(𝟙(𝑡 = 1) × 𝐺𝑖) + 𝜀𝑖𝑔𝑡

• The parameters are the following:
▶ Baseline trend: 𝛿 = 𝔼[𝑌𝑖𝑔1(0) − 𝑌𝑖𝑔0(0)] = (𝛿1 − 𝛿0)
▶ Control start: 𝜇 = 𝔼[𝑌𝑖𝑔0(0)] = 𝔼[𝛼𝑔|𝐺𝑖 = 0] + 𝛿0
▶ Baseline differences: 𝛾

𝛾 = 𝔼[𝑌𝑖𝑔0(0)|𝐺𝑖 = 1] − 𝔼[𝑌𝑖𝑔0(0)|𝐺𝑖 = 0]
= 𝔼[𝛼𝑔|𝐺𝑖 = 1] − 𝔼[𝛼𝑔|𝐺𝑖 = 0]

▶ New error: 𝜀𝑖𝑔𝑡 = 𝑌𝑖𝑔𝑡(0) − 𝔼[𝑌𝑖𝑔𝑡(0)|𝐷𝑖𝑔𝑡] = 𝛼𝑔 − 𝔼[𝛼𝑔|𝐺𝑖] + 𝜂𝑖𝑡
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Independence of new errors

• Using the above assumption, we can show that the treatment
is independent of the error in this model:

𝔼[𝜀𝑖𝑔𝑡 |𝐷𝑖𝑔1, 𝐷𝑖𝑔0] = 𝔼[𝜀𝑖𝑔𝑡 |𝐺𝑖]
= 𝔼[(𝛼𝑔 − 𝔼[𝛼𝑔|𝐺𝑖] + 𝜂𝑖𝑡)|𝐺𝑖]
= 𝔼[𝛼𝑔|𝐺𝑖] − 𝔼[𝔼[𝛼𝑔|𝐺𝑖]|𝐺𝑖] + 𝔼[𝜂𝑖𝑡 |𝐺𝑖]
= 𝔼[𝜂𝑖𝑡 |𝐺𝑖]
= 𝔼[𝜂𝑖𝑡] = 0

• No assumptions about relationship between 𝐺𝑖 and 𝛼𝑔.
• Just assumed independence of idiosyncratic errors:

𝔼[𝜂𝑖𝑡 |𝐺𝑖] = 0
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Motivating DID

• Under common trends, control group identifies the baseline
trend:

𝐸[𝑌𝑖𝑔𝑡 |𝐺𝑖 = 0, 𝑡 = 1] − 𝐸[𝑌𝑖𝑔𝑡 |𝐺𝑖 = 0, 𝑡 = 0] = 𝛿

• The treated group is the baseline trend plus the treatment
effect:

𝐸[𝑌𝑖𝑔𝑡 |𝐺𝑖 = 1, 𝑡 = 1] − 𝐸[𝑌𝑖𝑔𝑡 |𝐺𝑖 = 1, 𝑡 = 0] = 𝛿 + 𝜏

• Differences-in-differences:

(𝐸[𝑌𝑖𝑔𝑡 |𝐺𝑖 = 1, 𝑡 = 1] − 𝐸[𝑌𝑖𝑔𝑡 |𝐺𝑖 = 1, 𝑡 = 0])
− (𝐸[𝑌𝑖𝑔𝑡 |𝐺𝑖 = 0, 𝑡 = 1] − 𝐸[𝑌𝑖𝑔𝑡 |𝐺𝑖 = 0, 𝑡 = 0]) = 𝜏

• We can estimate each of these CEFs from the data and
compute their sample versions to get an estimate of 𝜏.
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Estimation

• For the two period, binary treatment case, a regression of the
outcome on time (pre-treatment 𝑡 = 0, post-treatment 𝑡 = 1),
treated group, and their interaction can estimate 𝜏:

𝑌𝑖𝑔𝑡 = 𝜇 + 𝛿𝟙(𝑡 = 1) + 𝛾𝐺𝑖 + 𝜏(𝟙(𝑡 = 1) × 𝐺𝑖) + 𝜀𝑖𝑔𝑡

• 𝜏̂ would be the coefficient on the interaction between time
and the treatment.
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More than 2 periods/groups

𝑌𝑖𝑔𝑡 = 𝜇𝑔 + 𝛿𝑡 + 𝜏(𝐼𝑖𝑡 × 𝐺𝑖) + 𝜀𝑖𝑔𝑡

• 𝐼𝑖𝑡 is an indicator for the intervention being applied at time 𝑠:
▶ 𝐼𝑖𝑡 = 1 when 𝑡 > 𝑠.
▶ 𝐼𝑖𝑡 = 0 when 𝑡 ≤ 𝑠.
▶ Also include period effects 𝛿𝑡

• More than two groups: include fixed effects for each group, 𝜇𝑔
• Commonly referred to as two-way fixed effects model.
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Panel data

• If we have panel data, then we can estimate this in a different,
more direct way. Note that:

𝜏 = 𝐸[𝑌𝑖1 − 𝑌𝑖0|𝐺𝑖 = 1] − 𝐸[𝑌𝑖1 − 𝑌𝑖0|𝐺𝑖 = 0]

• Thus, in the panel data case, we can estimate the effect by
regressing the change for each unit, 𝑌𝑖1 − 𝑌𝑖0, on the
treatment.

• Notice that this is the same as a first difference approach
since 𝐷𝑖𝑔0 = 0 for all 𝑔 and so 𝐺𝑖 = Δ𝐷𝑖𝑔𝑡.
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Ladd/Lenz example

summary(lm(I(vote_l_97 - vote_l_92) ~ tolabor, data = labour))

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 0.1078 0.0110 9.84 <2e-16 ***

## tolabor 0.0865 0.0301 2.87 0.0041 **

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 0.41 on 1591 degrees of freedom

## Multiple R-squared: 0.00516, Adjusted R-squared: 0.00454

## F-statistic: 8.25 on 1 and 1591 DF, p-value: 0.00412
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Threats to identification

• Obviously, the treatment needs to be independent of the
idiosyncratic shocks so that the variation of the outcome is
the same for the treated and control groups, but this might
not be plausible.

• Ashenfelter’s dip: which is a empirical finding that people who
enroll in job training programs see their earnings decline prior
to that training.

• In the Ladd/Lenz paper, perhaps Labour leaning people
selected into reading newspapers that we Labour leaning and
thus both the editors and readers were changing together.

• Thus, the independence of the treatment and idiosyncratic
shocks might only hold conditional on covariates.
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Robustness checks

• Lags and Leads
▶ if 𝐷𝑖𝑔𝑡 causes 𝑌𝑖𝑔𝑡, and not the other way around, then current

and lagged values of 𝐷𝑖𝑔𝑡 should have an effect on 𝑌𝑖𝑔𝑡, but
future values of 𝐷𝑖𝑔𝑡 should not.

▶ Re-estimate model by lagging or leading the intervention
indicator: 𝑇 ′

𝑖𝑡 = 1 when 𝑡 > 𝑠 + 1.
• Time trends

▶ With more than two time periods, we can add unit-specific
linear trends to the regression DID model:

𝑌𝑖𝑔𝑡 = 𝛿𝑡 + 𝜏𝐺𝑖 + 𝛼0𝑔 + 𝛼1𝑔 ⋅ 𝑡 + 𝜀𝑖𝑔𝑡

▶ Helps detect if there really are varying trends, if estimated
from pre-treatment data.
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2/ Conditional DID
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Nonparametric identification

• Up until now, we assumed a linear separable model and
constant treatment effects. Can we identify things
nonparametrically?

• Ease the notation: 𝑌𝑖𝑡 = 𝑌𝑖𝐺𝑖𝑡
• Key assumption is parallel trends:

𝐸[𝑌𝑖1(0) − 𝑌𝑖0(0)|𝑋𝑖, 𝐺𝑖 = 1] = 𝐸[𝑌𝑖1(0) − 𝑌𝑖0(0)|𝑋𝑖, 𝐺𝑖 = 0]

• What does this assumption say? It says that the potential
trend under control is the same for the control and treated
groups, conditional on covariates.
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• We can show that this is the key assumption for identifying
the ATT:

𝔼[𝑌𝑖1(1) − 𝑌𝑖1(0)|𝑋𝑖, 𝐺𝑖 = 1]
=𝔼[𝑌𝑖1(1) − 𝑌𝑖0(0) + 𝑌𝑖0(0) − 𝑌𝑖1(0)|𝑋𝑖, 𝐺𝑖 = 1]
= (𝔼[𝑌𝑖1(1)|𝑋𝑖, 𝐺𝑖 = 1] − 𝔼[𝑌𝑖0(0)|𝑋𝑖, 𝐺𝑖 = 1]) − (𝔼[𝑌𝑖1(0) − 𝑌𝑖0(0)|𝑋𝑖, 𝐺𝑖 = 1])
= (𝔼[𝑌𝑖1(1)|𝑋𝑖, 𝐺𝑖 = 1] − 𝔼[𝑌𝑖0|𝑋𝑖, 𝐺𝑖 = 1]) − (𝔼[𝑌𝑖1(0) − 𝑌𝑖0(0)|𝑋𝑖, 𝐺𝑖 = 0])
= (𝔼[𝑌𝑖1|𝑋𝑖, 𝐺𝑖 = 1] − 𝔼[𝑌𝑖0|𝑋𝑖, 𝐺𝑖 = 1]) − (𝔼[𝑌𝑖1(0)|𝑋𝑖, 𝐺𝑖 = 0] − 𝔼[𝑌𝑖0(0)|𝑋𝑖, 𝐺𝑖 = 0])
= (𝔼[𝑌𝑖1|𝑋𝑖, 𝐺𝑖 = 1] − 𝔼[𝑌𝑖0|𝑋𝑖, 𝐺𝑖 = 1])⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

differences for 𝐺𝑖=1
− (𝔼[𝑌𝑖1|𝑋𝑖, 𝐺𝑖 = 0] − 𝔼[𝑌𝑖0|𝑋𝑖, 𝐺𝑖 = 0])⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

differences for 𝐺𝑖=0

• ⇝ the unconditional ATT:

𝔼[𝑌𝑖1(1) − 𝑌𝑖1(0)|𝐺𝑖 = 1] = 𝔼𝑋 [𝔼[𝑌𝑖1(1) − 𝑌𝑖1(0)|𝑋𝑖, 𝐺𝑖 = 1]]

• Each CEF could be estimated nonparametrically ⇝ curse of
dimensionality

• Can’t identify the ATE because 𝔼[𝑌𝑖1(1)|𝑋𝑖, 𝐺𝑖 = 0] is
unrestricted.
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Nonparametric DID notes

• Note what is powerful here: no ignorability assumption. Relies
only on parallel trends assumption.

• Sometimes we need higher order differences
(diff-in-diff-in-diff).

• No obvious linearity assumption, but differences are a key part
of the assumption:

▶ Trends on one scale might not be parallel on another scale.
• With covariates, three general approaches (sound familiar?):

▶ Regression DID, using linearity assumptions for 𝑋𝑖.
▶ Matching on 𝑋𝑖, then using regular DID.
▶ Weighting based on the propensity score.
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Regression DD

• A Regression DID includes 𝑋𝑖 in a linear, additive manner:

𝑌𝑖𝑡 = 𝜇 + 𝑋′
𝑖 𝛽𝑡 + 𝛿𝟙(𝑡 = 1) + 𝛾𝐺𝑖 + 𝜏(𝟙(𝑡 = 1) × 𝐺𝑖) + 𝜀𝑖𝑡

• If we have repeated observations, we can take the differences
between 𝑡 = 0 and 𝑡 = 1:

𝑌𝑖1 − 𝑌𝑖0 = 𝛿 + 𝑋′
𝑖 𝛽 + 𝜏𝐺𝑖 + (𝜀𝑖1 − 𝜀𝑖0)

• Here, we have 𝛽 = 𝛽1 − 𝛽0. Further note that because
everyone is untreated in the first period, 𝐷𝑖1 − 𝐷𝑖0 = 𝐷𝑖1.

• As usual, for panel data, regress changes on treatment.
• This approach depends on constant effects and linearity in 𝑋𝑖.

Could use matching to reduce model dependence here.
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Ladd/Lenz with covariates

summary(lm(I(vote_l_97-vote_l_92) ~ tolabor + parent_labor,

data = labour))

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 0.1151 0.0133 8.66 <2e-16 ***

## tolabor 0.0882 0.0302 2.92 0.0035 **

## parent_labor -0.0207 0.0212 -0.97 0.3309

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 0.41 on 1590 degrees of freedom

## Multiple R-squared: 0.00575, Adjusted R-squared: 0.0045

## F-statistic: 4.6 on 2 and 1590 DF, p-value: 0.0102
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Semiparametric estimation with
repeated outcomes

• How to estimate regression DID without strong linearity
assumptions?

• Abadie (2005) on how to use weighting estimators to help
with estimation.

• Basically, we are going to weight the treated and control
groups so that they are balanced on the covariates.

• Abadie shows that:

𝔼[𝑌𝑖1(1) − 𝑌𝑖1(0)|𝐺𝑖 = 1] = 𝔼 [(𝑌𝑖1 − 𝑌𝑖0)
ℙ(𝐺𝑖 = 1) ⋅ 𝐺𝑖 − ℙ(𝐺𝑖 = 1|𝑋𝑖)

1 − ℙ(𝐺𝑖 = 1|𝑋𝑖)
]

• Have to estimate the propensity score for being in the treated
group ℙ(𝐺𝑖 = 1|𝑋𝑖)

• Weights are slightly different here than with IPTW because
we’re interested in the ATT.
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3/ Standard error
issues
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Serial correlation and placebo tests

𝑌𝑖𝑔𝑡 = 𝜇𝑔 + 𝛿𝑡 + 𝜏(𝐼𝑖𝑡 × 𝐺𝑖) + 𝜈𝑔𝑡 + 𝜀𝑖𝑔𝑡

• Bertrand et al (2004) highlight the problem of serial
correlation in 𝜈𝑔𝑡

• Placebo test:
▶ Outcome: CPS data on state-level female wages from 1979

and 1999
▶ Placebo treatment: randomly pick a fake intervention between

1985 and 1995.
▶ Placebos significant 45% of time at the 5% level.

• Solutions:
▶ Clustered SEs at the group-level
▶ Block bootstrap on group (repeatedly sample entire 𝑔 vectors

rather than 𝑖𝑡 rows)
▶ Aggregate to 𝑔 units with two time periods each: pre- and

post-intervention.
• All solutions depend on large numbers of groups.
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Cluster-robust SEs
• First, let’s write the within-group regressions like so:

𝐲𝑔 = 𝐗𝑔𝛽 + 𝜀𝑔

• 𝐲𝑔 is the vector of responses for group 𝑔, let 𝐗 be all the 𝐗𝑔
stacked into one matrix.

• We assume that respondents are independent across units,
but possibly dependent within clusters. Thus, we have

Var[𝜀𝑔|𝐗𝑔] = Σ𝑔

• Under clustered dependence, we can write the sandwich
variance like so:

Var[𝛽̂|𝐗] = 𝔼 [𝐗𝑔𝐗′𝑔]−1 𝔼 [𝐗′𝑔Σ𝑔𝐗𝑔] 𝔼 [𝐗𝑔𝐗′𝑔]−1

• Using the plug-in principle:

Var[𝛽̂|𝐗] = (𝐗′𝐗)−1 ⎛⎜
⎝

∑
𝑔

𝐗′𝑔Σ𝑔𝐗𝑔⎞⎟
⎠

(𝐗′𝐗)−1
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Estimating CRSEs

• Way to estimate this matrix: replace Σ𝑔 with an estimate
based on the within-cluster residuals, 𝜀̂𝑔:

Σ̂𝑔 = 𝜀̂𝑔𝜀̂′
𝑔

• Final expression for our cluster-robust covariance matrix
estimate:

V̂ar[𝛽̂|𝐗] = (𝐗′𝐗)−1 ⎛⎜
⎝

∑
𝑔

𝐗′𝑔𝜀̂𝑔𝜀̂′
𝑔𝐗𝑔⎞⎟

⎠
(𝐗′𝐗)−1

• With small-sample adjustment (which is what most software
packages report):

V̂ar𝑎[𝛽̂|𝐗] = 𝑚
𝑚 − 1

𝑛 − 1
𝑛 − 𝑘 − 1 (𝐗′𝐗)−1 ⎛⎜

⎝
∑
𝑔

𝐗′𝑔𝜀̂𝑔𝜀̂′
𝑔𝐗𝑔⎞⎟

⎠
(𝐗′𝐗)−1
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Block bootstrap

• Block bootstrap is when we bootstrap whole groups (states,
etc) instead of 𝑖𝑡 pairs.

▶ Accounts for correlations within the groups (serial correlation,
etc).

• Let 𝑔 ∈ 1, … , 𝑀 be the group indices. Procedure:
1. Randomly sample 𝑀 indices with replacement:

𝑔∗
𝑏 = (𝑔∗

𝑏1, … , 𝑔∗
𝑏𝑀)

2. Grab the outcome vector and covariate matrix for each
sampled index: (𝐲𝑔∗

𝑏1
, 𝐗𝑔∗

𝑏1
)

3. Stack all of these together into one data matrix: 𝐲∗
𝑏, 𝐗∗

𝑏
4. Estimate 𝜏̂∗

𝑏 from a DID model with 𝐲∗
𝑏, 𝐗∗

𝑏.
5. Repeat 1-4 𝐵 times to get the bootstrapped distribution of 𝜏̂

• Theoretically very simple: just bootstrap groups.
• Computationally tricky because you need to keep track of all

the multilevel indices.
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Block bootstrap coding
• Toy data:

dat[c(1:2, 6:7), ]

## groups d y

## 1 A 0 -0.604

## 2 A 1 -0.074

## 6 B 1 -0.142

## 7 B 0 -1.332

• Trick to get the indices for each group:

lookup <- split(1:nrow(dat), dat$groups)

lookup[1]

## $A

## [1] 1 2 3 4 5 26 27 28 29 30 51 52 53 54 55 76

## [17] 77 78 79 80 101 102 103 104 105 126 127 128 129 130 151 152

## [33] 153 154 155 176 177
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Block bootstrap coding
• Take one sample of groups:

gnames <- names(lookup)

star <- sample(gnames, size = length(gnames), replace = TRUE)

head(lookup[star], n = 2)

## $C

## [1] 11 12 13 14 15 36 37 38 39 40 61 62 63 64 65 86

## [17] 87 88 89 90 111 112 113 114 115 136 137 138 139 140 161 162

## [33] 163 164 165

##

## $C

## [1] 11 12 13 14 15 36 37 38 39 40 61 62 63 64 65 86

## [17] 87 88 89 90 111 112 113 114 115 136 137 138 139 140 161 162

## [33] 163 164 165

• Use unlist() to get all of the indices from your sample:

dat.star <- dat[unlist(lookup[star]), ]
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4/ Other DID
approaches
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Changes-in-changes

• Athey and Imbens (2006) generalize DID to handle looking at
different changes in the distribution of 𝑌𝑖𝑡

• Basic idea: relative distribution of units doesn’t change across
time.

▶ Suppose someone went from 5th percentile to the median in
the control group.

▶ A treated unit with the same pretreatment outcome would
have had the same change had they been the control group.

• Estimate the CDF and inverse CDF of the control group
distributions at 𝑡 = 0 and 𝑡 = 1 to impute the counterfactual
changes of the treated group over time.

• Can use these estimates to get ATT, or any change in the
distribution (quantiles, variance, etc).

• Requires more data to estimate the CDFs.
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Synthetic controls

• Abadie and Gardeazabal (2003) use a DID approach for
“quantitative case studies.”

• Application: effect of an intervention in a single country or
state at one point in time.

• Basic idea: 1 treated group, many controls.
▶ Compare the time-series of the outcome in the treated group

to the control.
▶ But which control group should you use? So many and they

may not be comparable to the treated.
• Synthetic control: use a convex combination of the controls to

create a synthetic control.
▶ Choose the weights that minimize the pretreatment differences

between treated and synthetic control.
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Without synthetic controls
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With synthetic controls
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