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Why match?
• Let’s say that we know that ignorability holds conditional onXi. We know that we have to “control for”
Xi in some way, but what is the best way to do this? ere are three broad approaches that overlap in
parts and havemuch in common, but also have fundamental differences. ey arematching, weighting,
and regression. We’ll talk about each of these in the coming weeks.

• Matching has a number of nice properties that have made it appealing the last few years. e most
important is that, under ignorability, if we are able to ĕnd a matching solution with good balance on
the covariates, then no further modeling of the covariates is necessary. We get to side-step the rather
strong assumptions of linear relationships between Xi and Yi that are required by regression.

• Remember that matching doesn’t justify a causal effect, ignorability does. Matching doesn’t make ig-
norability more plausible, it simply represents a non-parametric way of estimating causal effects under
ignorability. As Sekhon says:

Without an experiment, natural experiment, a discontinuity, or some other strong design, no
amount of econometric or statistical modeling can make the move from correlation to causation
persuasive.

• Matching’s appeal is twofold: ĕrst, it can greatly simplify the estimation of certain causal parameters
and second, it can reduce the dependence of such estimates on parametric models.

Causal Estimates

• Ignorability + Balance = Ignorability conditional on the match.

• As we did last week, we are going to always assume that ignorability holds: Yi(a) ⊥⊥ Ai|Xi for all
values a. Again, this is just the selection on the observables assumption. We’ll also assume overlap:
0 < Pr[Ai = 1|Xi] < 1.

• ATT is identiĕed using exact matching without making assumptions about the relationship between
Xi and Yi. Aer matching E[Yi|Ai = 0] = E[E[Yi|Ai = 0, Xi = x]] which means we can just use
the difference in means.





• Let’s say that for each treated unit we can ĕnd an exact match: a control unit with the same values of
Xi and suppose we drop any control units that are not matched. What does this imply? Well, for one,
we know that the distriubtion of Xi will be the same across the treated and control groups Pr(Xi =
x|Ai = 1) = Pr(Xi = x|Ai = 0) for all values of x. is is because in the matched data, for every
treated unit, there is one (and, in this case, only one) control unit with the same exact value ofXi. e
two groups must have the same distribution in Xi. Let’s show that the ATT is identiĕed if the data is
exactly matched:

τATT = E[Yi(1)|Ai = 1]− E[Yi(0)|Ai = 1]

= E[Yi|Ai = 1]−
∑
x∈X

E[Yi(0)|Xi = x,Ai = 1]Pr(Xi|Ai = 1) (Consistency & Interated Expectations)

= E[Yi|Ai = 1]−
∑
x∈X

E[Yi(0)|Xi = x,Ai = 0]Pr(Xi|Ai = 1) (Ignorability)

= E[Yi|Ai = 1]−
∑
x∈X

E[Yi|Xi = x,Ai = 0]Pr(Xi|Ai = 1) (Consistency)

= E[Yi|Ai = 1]−
∑
x∈X

E[Yi|Xi = x,Ai = 0]Pr(Xi|Ai = 0) (Exactly Matched Data)

= E[Yi|Ai = 1]− E[Yi|Ai = 0] (Iterated Expectations)

• As you can see, with ignorability, consisitency, and exact matches, we can identify the ATT. In fact,
we don’t even need full ignorability here, but rather a weaker condition: E[Yi(0)|Xi, Ai = 1] =
E[Yi(0)|Xi, Ai = 0]. ere are two features of this weaker assumption: one is that we only have
to make assumptions about the potential outcome under control, not the potential outcome under
treatment. Second, we only have to assume condition mean independence (sometimes called CMI),
not full independence (which would include higher moments).

• Obviously the nice part about this analysis is that in the matched dataset, all we need is a simple dif-
ference in means. at is, we can ignore Xi. We just take the mean of Yi among the control units. If
there are different numbers of matches for each treated unit, then we need to take the weighted mean
since Pr[Xi|Ai = 1] = 1

M Pr[Xi|Ai = 0], where M is the number of matched controls.

• One way to think of this approach is that we are “imputing” the missing values Yi(0) for the treated
units, using control units with very similar values ofXi. In this sense, matching is very similar to some
approaches to missing data (namely, hot-deck imputation).

• Here we used exact matching, but that is not necessary. To justify matching, all we need is balance,
conditional on the matching solution. A matching solution is a subset of the data produced by the
matching procedure. Let’s call that S . Note that S is function of the covariates Xi, so that ignorability
on the covariates implies ignorability on the covariates and thematching soluation: Yi(a) ⊥⊥ Ai|Xi,S .
Now, if we can achieve balance through that matching solution, then we should have the distribution
of Xi and Ai be independent, conditional on that solution: Ai ⊥⊥ Xi|S . is is obviously a checkable
condition: we can assess balance under any matched data set. ese two properties, combined with
Lemmas . and . of Dawid () imply that there is ignorability conditional on the just the match-
ing solution: Yi(a) ⊥⊥ Ai|S . us, if we can ensure balance in the matched dataset, then we will be
able to identify causal parameters.





Model dependence

• e exact model we use will be less relevant because (a) we won’t be extrapolating to regions of the data
where there is no overlap and (b) the lack of assumptions above make the effects identiĕed without any
modeling assumptions.

• Without matching, the model we choose for the relationship between Xi and Yi will affect our esti-
mates of the the relationship between Ai and Yi. If we match, though, we have a dataset with good
balance so that Ai and Xi are approximately independent. erefore, in regressions or other models,
the coefficient on Ai will be less affected by the inclusion or exclusion of Xi or functions of Xi.

e matching procedure
. Choose a number of matches ( control: treated, :, k:, etc), whether to match with replacement or

not, and a distance metric (propensity scores, Mahalanobis distance).

. Choose a set of pre-treatment covariates that satify ignorability.

. Find matches (nearest neighbor, GenMatch, optimal matching), dropping control units that are not
matched.

. Check balance (difference-in-means, medians, eQQ, etc)

. Repeat ()-() until balance is acceptable, adding variables or functions of variables to improve balance.

. Calculate the effect of the treatment on the outcome in the matched datasets.

Number of matches

• e number ofmatches for each control groupmust strike a balance because small numbers ofmatches
means fewer observations, but more matches means that each match might be a worse match.





• If there are variable numbers of control matches for each treated unit, we need to weight the controls
each matched stratum according the number of controls in that stratum.

• Matching with replacement is, in general, a good idea because it allows for better matches, but we may
have to use weights to account for the units being in the data twice. In addition, if we match all units
(match treated to control and control to treated), then we can estimate the ATE in addition to the ATT.
Of course, the estimator will be slightly more complicated because we have to calculate the imputed
potential outcomes for each unit, control and treated.

Distance metrics

• In order to choose a matching control unit for each treated unit, we need some way of measuring the
distance between two units in terms of the covariates, Xi.

• Exact: only match units to other units that have the same exact values of Xi. is obviously works
for a small number of discrete variables, but as we either add continuous variables or increase the
dimensionality of X , exact matching won’t be feasible.

Dij =

{
0 if Xi = Xj

∞ if Xi ̸= Xj

• Propensity scores: When there are many covariates, we can match on the propensity score. e jus-
tiĕcation for this comes from last week when we showed that conditioning on the (true) propensity
score is equivalent to conditioning on the entire set of covariates. Of course, we have to estimate the
propensity score, so it is no longer necessarily true that matching on the estimated propensity score
will increase balance. Rubin and his colleagues have shown that propensity score matching has good
properties if the distribution of the covariates is ellipsodally symmetric (such as Normal or t), but if
this isn’t true then the properties can be quite bad.

Dij = |e(Xi)− e(Xj)|

• Linear propensity scores: When estimating the propensity scores from a logistic regression it is oen
better to use the linear propensity score, which is just the linear predictor, logit(e(Xi)) = Xiβ.

Dij = |logit(e(Xi))− logit(e(Xj))|

• Mahalanobis distance: the Mahalanobis distance is an alternative to Euclidean distance that takes into
account the distribution of the data. is is useful for ĕnding “nearby” control units in a multidimen-
sional space with continuous covariates. e intuition here is that we want to normalize the distance
between two points by the standard deviation of each variable. If two units are very far apart on the
nominal scale, but the standard deviation is also high, then we might want to count this as “close”
compared to two units that are close on a nominal scale with an extremely small SD. But we could
achieve this with just Euclidean distance on standardized variables. e Mahalanobis distance takes
into account covariances as well. We need a covariance matrix, Σ, to calculate the MD. For the ATT
we’ll use the covariance matrix of the treated data and for the ATE, we’ll use the covariance matrix of
the entire data.

Dij =
√

(Xi −Xj)′Σ−1(Xi −Xj)





• Calipers. Sometimes forcing a match between two units produces poor balance, so we would rather
not match treated units to control units that are too far away on the propensity score. e maximum
distance in terms of the (linear) propensity score that we would be willing to accept is called the caliper,
c. us, we would be dropping treated and control units potentially. For those control units within the
caliper, we might use Mahalanobis distance to ĕnd matches:

Dij =

{√
(Xi −Xj)′Σ−1(Xi −Xj) if |logit(e(Xi))− logit(e(Xj))| ≤ c

∞ if |logit(e(Xi))− logit(e(Xj))| > c

Estimands

• In general, what we showed at the beginning is that the ATT is easy to calculate with : exact matches
on the treated units: we just take a difference inmeans. We can identify theATEwith : exactmatching
as well, but we need full ignorability and we need to keep all control units. e calculation becomes
more cumbersome if we have multiple matches for each unit. See Imbens () for a description of
ATE estimators.

• “Moving the goalposts”: When we keep all of the treated units and only drop control units from the
data, we can, in general identify the ATT, but if we begin to drop treated units, then it’s unclear what
we are estimating. It becomes the treatment effect among the matched units, which may or may not be
an interesting group.

• Common support: related to calipers is the notion of common support. If there are areas for which
positivity doesn’t (empirically) because there are either no controls or no treated units, then we have
to choose between extrapolating to that region or calculating the effect for the common support of the
data (where there are both treated and control observations). We should deĕnitely not extrapolate to
portions of the covariate space where it is theoretically impossible for there to be treated or control
units. We wouldn’t want to compare the effect of voting for presidential candidates for those under age
, since it is theoretically impossible for them to vote (legally).

Matching methods

• Nearest Neighbor: Using the chosen distance matric, Dij , ĕnd a control unit that is closest to each
treated unit. Obviously, the order of the matching matters in terms of which units get matched to
which other units. is is sometimes called “greedy” matching.

• Optimal matching: Finds the matching solution that minimizes overall distance.

• GenMatch: e key insight of GenMatch is that using MD as a distance metric might fail in certain
circumstances. Instead, they attempt to ĕnd the balance metric that induces the best balance in the
data. ey augment MD with a set of variable weights. en, GenMatch uses a genetic algorithm to
ĕnd the set of variable weights that produces a match that maximizes balance in the data. A genetic
algorithm is needed because the optimization problem is irregular.

• CEM: An alternative method is akin to stratiĕcation from last week. Suppose we have a set of continu-
ous covariates. Obviously, we cannot use exact matching, but if we can ĕnd a stratiĕcation/coarsening
of the data that produces good balance, then ignorability will hold within those strata by the arugments





we used last week. us, we’ll coarsen the data (say, splitting years of education into less than H.S., H.S.
degree, some college, B.A./B.S., Advanced degree), then calculate the ATT within each stratum where
there are control and treated units, dropping any stratum without both types of units. us, we might
drop both treated and control units.

• One nice feature of CEM is that it allows you to control the amount of imbalance up front by setting the
ĕneness of the coarsening. Coarser means more imbalance, ĕner means less imbalance but also fewer
matched units.

Assessing balance

• Because allmatchingmethods attempt tominimize balance, the choice of balancemetricwill determine
which matching method performs better.

• Differences-in-means/medians: fairly straightfoward.

• Quantile-quantile plots/KS statistics: e difference in means doesn’t tell us about the comparison of
distributions between the treated and control groups. at is, we would like to compare the entire
density a covariate under control and treatment. We can visually inspect the quantile-quantile plots
for a given variable and/or attempt to summarize the difference between two histograms using the
eQQ statistics, Kolmogorov-Smirnov tests, and Kullback-Leibler distances. ese are useful ways to
measure difference between covariate distributions.

• L1: Ideally, we would want to meaure imbalance by a multivariate histograms. is measure of im-
balance tries to replicate that by coarsening the data into a multivariate histogram and calculating the
difference in counts within each stratum of that stratiĕcation. Obviously, this is closely tied to CEM.




