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Where are we? Where are we
going?

• What we’ve been up to: estimating parameters of population
distributions. Generally we’ve been learning about a single
variable.

• This week and for the rest of the term, we’ll be interested in
the relationships between variables. How does one variable
change we change the values of another variable? These will
be the bread and butter of the class moving forward.
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1/ Relationships
Between Two
Variables
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What is a relationship and why do
we care?

• Most of what we want to do in the social science is learn
about how two variables are related

• Examples:
▶ Does turnout vary by types of mailers received?
▶ Is the quality of political institutions related to average

incomes?
▶ Does conflict mediation help reduce civil conflict?
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Notation and conventions

• 𝑌𝑖 - the dependent variable or outcome or regressand or
left-hand-side variable or response

▶ Voter turnout
▶ Log GDP per capita
▶ Number of battle deaths

• 𝑋𝑖 - the independent variable or explanatory variable or
regressor or right-hand-side variable or treatment or predictor

▶ Social pressure mailer versus Civic Duty Mailer
▶ Average Expropriation Risk
▶ Presence of conflict mediation
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Joint distribution review

• (𝑌𝑖, 𝑋𝑖) are draws from an i.i.d. joint distribution 𝑓𝑌,𝑋
▶ 𝑌𝑖 and 𝑋𝑖 are measured on the same unit 𝑖

• Regression tries to understand how 𝑌𝑖 varies as a function of
𝑋𝑖:

𝑌𝑖 = 𝑓(𝑋𝑖) + error
• WARNING different than our use of 𝑌𝑖 and 𝑋𝑖 as r.v.s for

different groups.
▶ There, 𝑌𝑖 and 𝑋𝑖 corresponded to different units.
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Three uses of regression

1. Description - parsimonious summary of the data
2. Prediction/Estimation/Inference - learn about parameters

of the joint distribution of the data
3. Causal Inference - evaluate counterfactuals
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Describing relationships

• Remember that we had ways to summarize the relationship
between variables in the population.

• Joint densities, covariance, and correlation were all ways to
summarize the relationship between two variables.

• But these were population quantities and we only have
samples, so we may want to estimate these quantities using
their sample analogs
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Scatterplots
• Sample version of joint probability density.
• Shows graphically how two variables are related

plot(ajr$logem4, ajr$logpgp95, xlab = "Log Settler Mortality",
ylab = "Log GDP per capita", pch = 19, bty = "n")

text(ajr$logem4, ajr$logpgp95, ajr$shortnam, pos = 1)
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Non-linear relationship
• Example of a non-linear relationship, where we use the

unlogged version of GDP and settler mortality:

plot(exp(ajr$logem4), exp(ajr$logpgp95), xlab = "Settler Mortality",
ylab = "GDP per capita", pch = 19, bty = "n")

text(exp(ajr$logem4), exp(ajr$logpgp95), ajr$shortnam, pos = 1)
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Sample covariance

• Population covariance:

Cov(𝑋, 𝑌) = 𝔼[(𝑋𝑖 − 𝔼[𝑋])(𝑌𝑖 − 𝔼[𝑌])]

• Defintion The sample covariance between 𝑌𝑖 and 𝑋𝑖 is

􏾨Cov(𝑋, 𝑌) = 1
𝑛 − 1

𝑛
􏾜
𝑖=􏷠
(𝑋𝑖 − 𝑋𝑛)(𝑌𝑖 − 𝑌𝑛)

## tell cov() to use only the pairwise complete observations:
cov(ajr$logem4, ajr$logpgp95, use = "pair")

## [1] -0.9881
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Sample correlation

• Population correlation:

𝜌 = Cov(𝑋, 𝑌)/𝜎𝑋𝜎𝑌

• Defintion The sample correlation between 𝑌𝑖 and 𝑋𝑖 is

𝜌̂ = 𝑟 =
􏾨Cov(𝑋, 𝑌)
𝑆𝑋𝑆𝑌

=
∑𝑛
𝑖=􏷠(𝑋𝑖 − 𝑋𝑛)(𝑌𝑖 − 𝑌𝑛)

√∑
𝑛
𝑖=􏷠(𝑋𝑖 − 𝑋𝑛)􏷡∑

𝑛
𝑖=􏷠(𝑌𝑖 − 𝑌𝑛)􏷡

## and has the same solution to NAs:
cor(ajr$logem4, ajr$logpgp95, use = "pair")

## [1] -0.7048
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2/ Conditional
Expectation
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Conditional expectation review

• Definition The population conditional expectation
function (CEF), 𝔼[𝑌𝑖|𝑋𝑖 = 𝑥], is the function that gives the
mean of 𝑌 at various values of 𝑥.

▶ Also called the regression function.
▶ The CEF is a function of 𝑥: 𝜇(𝑥).

• 𝔼[𝑌𝑖|𝑋𝑖 = 𝑥] is a feature of the population distribution.
• We will want to produce estimates 􏾧𝔼[𝑌𝑖|𝑋𝑖 = 𝑥]
• Regression at its most fundamental is about how the mean of
𝑌 changes as a function of 𝑋
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CEF for binary covariates

• We’ve been writing 𝜇𝑦 and 𝜇𝑥 for the means in different
groups.

• Different approach:
▶ 𝑌𝑖 is the outcome for every unit in either group.
▶ 𝑋𝑖 = 1 for women, 𝑋𝑖 = 0 for men.

• Then the mean in each group is just a conditional expectation:

𝜇𝑤 = 𝐸[𝑌𝑖|𝑋𝑖 = 1]
𝜇𝑚 = 𝐸[𝑌𝑖|𝑋𝑖 = 0]

• Notice here that since 𝑋𝑖 can only take on two values, 0 and
1, then these two conditional means completely summarize
the CEF.
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Estimating the CEF for binary
covariates

• How do we estimate 􏾧𝔼[𝑌𝑖|𝑋𝑖 = 𝑥]?
• Sample means within each group:

􏾧𝔼[𝑌𝑖|𝑋𝑖 = 1] =
1
𝑛􏷠

􏾜
𝑖∶𝑋𝑖=􏷠

𝑌𝑖

􏾧𝔼[𝑌𝑖|𝑋𝑖 = 0] =
1
𝑛􏷟

􏾜
𝑖∶𝑋𝑖=􏷟

𝑌𝑖

• 𝑛􏷠 = ∑𝑛
𝑖=􏷠𝑋𝑖 is the number of women in the sample.

• 𝑛􏷟 = 𝑛 − 𝑛􏷠 is the number of men.
• ∑

𝑖∶𝑋𝑖=􏷠
sum only over the 𝑖 that have 𝑋𝑖 = 1, meaning that 𝑖

is a woman.
• ⇝ estimate the mean of 𝑌𝑖 conditional on 𝑋𝑖 by just

estimating the means within each group of 𝑋𝑖.
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Binary covariate example

## mean of log GDP among non-African countries
mean(ajr$logpgp95[ajr$africa == 0], na.rm = TRUE)

## [1] 8.716

## mean of log GDP among African countries
mean(ajr$logpgp95[ajr$africa == 1], na.rm = TRUE)

## [1] 7.355
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Binary covariate CEF plot
plot(ajr$africa, ajr$logpgp95, ylab = "Log GDP per capita", xlab = "Africa",

bty = "n")
points(x = 0, y = mean(ajr$logpgp95[ajr$africa == 0], na.rm = TRUE),

pch = 19, col = "red", cex = 3)
points(x = 1, y = mean(ajr$logpgp95[ajr$africa == 1], na.rm = TRUE),

pch = 19, col = "red", cex = 3)
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Discrete covariate: estimating the
CEF

• What if 𝑋𝑖 isn’t binary, but takes on > 2 discrete values?
• The same logic applies, we can still estimate 𝔼[𝑌𝑖|𝑋𝑖 = 𝑥]

with the sample mean among those who have 𝑋𝑖 = 𝑥:

􏾧𝔼[𝑌𝑖|𝑋𝑖 = 𝑥] =
1
𝑛𝑥

􏾜
𝑖∶𝑋𝑖=𝑥

𝑌𝑖
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Discrete covariate example

• I’ve been collecting data on my own weight for a while.
• How does my weight (𝑌𝑖) varied by the day of the week (𝑋𝑖)?
• Calculate the mean weight for each day of the week:

weight <- read.csv("weight.csv", stringsAsFactors = FALSE)
weight$weekday <- as.numeric(format(as.Date(weight$date, format = "%m/%d/%y%n%H:%M"),

"%w")) + 1
weight$date <- as.Date(weight$date, format = "%m/%d/%y%n%H:%M")
day.means <- rep(NA, times = 7)
names(day.means) <- c("1 - Su", "2 - Mo", "3 - Tu", "4 - We", "5 - Th",

"6 - Fr", "7 - Sa")
for (i in 1:7) {

day.means[i] <- mean(weight$weight[weight$weekday == i])
}
day.means

## 1 - Su 2 - Mo 3 - Tu 4 - We 5 - Th 6 - Fr 7 - Sa
## 170.4 170.2 169.6 169.5 169.7 169.8 170.2
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Discrete covariate CEF plot
plot(x = weight$weekday, y = weight$weight, xaxt = "n", xlab = "Weekday",

ylab = "Average Weight", pch = 19, col = "grey60")
points(x = 1:7, y = day.means, pch = 19, col = "red", cex = 3)
lines(x = 1:7, y = day.means, pch = 19, col = "red", lwd = 3)
axis(side = 1, at = 1:7, labels = names(day.means))
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3/ Conditional
Expectations with
Continuous
Covariates
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Continuous covariate (I): each
unique value gets a mean

• What if 𝑋𝑖 is continuous? Can we calculate a mean for every
value of 𝑋𝑖?

• Not really, because remember the probability that two values
will be the same in a continuous variable is 0.

• Thus, we’ll end up with a very “jumpy” function, 􏾧𝔼[𝑌𝑖|𝑋𝑖 = 𝑥],
since 𝑛𝑥 will be at most 1 for any value of 𝑥.
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Continuous covariate (I) example

• I also wear an activity tracker and that collects how active I
am during the day

• Let’s look at the relationship between my weight and my
active minutes in the previous day using this approach.

fitbit <- read.csv("fitbit.csv", stringsAsFactors = FALSE)
fitbit$date <- as.Date(fitbit$date, format = "%m/%d/%y")
## lag fitbit by one day
fitbit$date <- fitbit$date + 1
## merge fitbit and weight data
weight <- merge(weight, fitbit, by = "date")
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Continuous covariate (I) CEF plot
plot(weight$active.mins[order(weight$active.mins)],

weight$weight[order(weight$active.mins)], type = "l", lwd = 3, pch = 19,
col = "indianred",xlab = "Active Minutes Previous Day", ylab = "Weight")

points(weight$active.mins, weight$weight, pch = 19, cex = 0.5)
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• The estimates, 􏾧𝔼[𝑌𝑖|𝑋𝑖 = 𝑥], will jump around a lot from
sample to sample and have high sampling variance.
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Continuous covariate (II): stratify
and take means

• So, that seems like each value of 𝑋𝑖 won’t work, but maybe
we can take the continuous variable and turn it into a discrete
variable. We call this stratification.

• Once it’s discrete, we can just calculate the means within
each strata.

• For instance, we could break up the “Active Minutes” variable
into 3 categories: lazy (< 30mins), active (30-60mins), and
very active (>60min).

lowactivity.mean <- mean(weight$weight[weight$active.mins < 30])
medactivity.mean <- mean(weight$weight[weight$active.mins >= 30 & weight$active.mins <

60])
hiactivity.mean <- mean(weight$weight[weight$active.mins >= 60])
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Continuous covariate (II) stratified
CEF
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Continuous covariate (II) stratified
CEF
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Continuous covariate (II) stratified
CEF
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Continuous covariate (III): model
relationship as a line

• The stratification approach was fairly crude: it assumed that
means were constant within strata, but that seems wrong.

• Can we get a more global model for the regression function?
Well, maybe we could assume that it is linear:

𝔼[𝑌𝑖|𝑋𝑖 = 𝑥] = 𝛽􏷟 + 𝛽􏷠𝑥

• Why might we do this? Parsimony, first and foremost: 2
numbers to predict any value.

• Some other nice properties we’ll talk about in the coming
weeks.
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Continuous covariate (III)
• Estimated linear CEF:

plot(weight$active.mins, weight$weight, pch = 19, col = "grey60",
xlab = "Active Minutes Previous Day", ylab = "Weight")

abline(lm(weight ~ active.mins, data = weight), col = "indianred", lwd = 3)
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Interpretation of the regression
slope

• When we model the regression function as a line, we can
interpret the parameters of the line in appealing ways:

1. Intercept: the average outcome among units with 𝑋𝑖 = 0 is
𝛽􏷟:

𝔼[𝑌𝑖|𝑋𝑖 = 0] = 𝛽􏷟 + 𝛽􏷠0 = 𝛽􏷟

2. Slope: a one-unit change in 𝑋𝑖 is associated with a 𝛽􏷠 change
in 𝑌𝑖

𝔼[𝑌𝑖|𝑋𝑖 = 𝑥 + 1] − 𝔼[𝑌𝑖|𝑋𝑖 = 𝑥] = (𝛽􏷟 + 𝛽􏷠(𝑥 + 1)) − (𝛽􏷟 + 𝛽􏷠𝑥)
= 𝛽􏷟+𝛽􏷠𝑥 + 𝛽􏷠−𝛽􏷟−𝛽􏷠𝑥
= 𝛽􏷠
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Linear regression with a binary
covariate

• Using the two facts above, it’s easy to see that when 𝑋𝑖 is
binary, then we have the following:

1. Intercept: 𝔼[𝑌𝑖|𝑋𝑖 = 0] = 𝛽􏷟
2. Slope: average difference between 𝑋𝑖 = 1 group and 𝑋𝑖 = 0

group: 𝛽􏷠 = 𝔼[𝑌𝑖|𝑋𝑖 = 1] − 𝔼[𝑌𝑖|𝑋𝑖 = 0]

• Thus, we can read off the difference in means between two
groups as the slope coefficient on a linear regression
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Linear CEF with a binary covariate
plot(ajr$africa, ajr$logpgp95, xlab = "Africa", ylab = "Log GDP per capita",

xlim = c(-0.25, 1.25), bty = "n")
points(x = 0, y = mean(ajr$logpgp95[ajr$africa == 0], na.rm = TRUE),

pch = 19, col = "red", cex = 3)
points(x = 1, y = mean(ajr$logpgp95[ajr$africa == 1], na.rm = TRUE),

pch = 19, col = "red", cex = 3)
abline(lm(logpgp95 ~ africa, data = ajr), col = "red", lwd = 2)
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Parametric vs. nonparametric
models

􏾧𝔼[𝑌𝑖|𝑋𝑖 = 𝑥] =
1
𝑛𝑥

􏾜
𝑖∶𝑋𝑖=𝑥

𝑌𝑖

• Conditional sample mean: nonparametric because there are
no assumptions about how 𝔼[𝑌𝑖|𝑋𝑖 = 𝑥] changes as we change
𝑥.

▶ We just estimate the mean among each value of 𝑥.
▶ Breaks down with continuous independent variables.

• A parametric model makes assumptions about the functional
form of 𝔼[𝑌𝑖|𝑋𝑖 = 𝑥].

▶ Suppose we assume the linear model 𝔼[𝑌𝑖|𝑋𝑖 = 𝑥] = 𝛽􏷟 + 𝛽􏷠𝑥.
▶ We are assuming that 𝔼[𝑌𝑖|𝑋𝑖 = 𝑥 + 1] − 𝔼[𝑌𝑖|𝑋𝑖 = 𝑥] = 𝛽􏷠 at

every value of 𝑥.
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Bias-variance tradeoff
• How we model the regression function, 𝔼[𝑌𝑖|𝑋𝑖 = 𝑥], affects

our the behavior of our estimates:
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• Low bias (function “nails” every point)
• High variance (drastic changes from sample to sample)
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Bias-variance tradeoff
• How we model the regression function, 𝔼[𝑌𝑖|𝑋𝑖 = 𝑥], affects

our the behavior of our estimates:
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• Higher bias (misses “local” variation)
• Low variance (slope and intercept will only change slightly

from sample to sample)
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4/ Lines of Best Fit
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Back up and review

• To review our approach:
▶ We wanted to estimate the CEF/regression function
𝔼[𝑌𝑖|𝑋𝑖 = 𝑥], but found that it was hard to do
nonparametrically

▶ So we’re going to model it: place restrictions on its functional.
▶ Easiest functional form is a line:

𝔼[𝑌𝑖|𝑋𝑖 = 𝑥] = 𝛽􏷟 + 𝛽􏷠𝑥

• 𝛽􏷟 and 𝛽􏷠 are population parameters just like 𝜇 or 𝜎􏷡!
• Need to estimate them in our samples! But how?
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Simple linear regression model

• We’ll need some terms and concepts first. Let’s write our
model:

𝑌𝑖 = 𝔼[𝑌𝑖|𝑋𝑖 = 𝑥] + 𝑢𝑖
𝑌𝑖 = 𝛽􏷟 + 𝛽􏷠𝑋𝑖 + 𝑢𝑖

• Now, suppose we have some estimates of the slope, 𝛽̂􏷠, and
the intercept, 𝛽̂􏷟. Then the fitted or sample regression line is

􏾧𝔼[𝑌𝑖|𝑋𝑖 = 𝑥] = 􏾦𝛽􏷟 + 􏾦𝛽􏷠𝑥

• We want our estimate to predict outcomes very well so that
(𝑌𝑖 − 􏾧𝔼[𝑌𝑖|𝑋𝑖]) are small.
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Fitted linear CEF
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Fitted linear CEF
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Fitted values and residuals

• Definition A fitted value or predicted value is the
estimated conditional mean of 𝑌𝑖 for a particular observation
with independent variable 𝑋𝑖:

􏾧𝑌𝑖 = 􏾧𝔼[𝑌𝑖|𝑋𝑖] = 􏾦𝛽􏷟 + 􏾦𝛽􏷠𝑋𝑖

• Definition The residual is the difference between the actual
value of 𝑌𝑖 and the predicted value, 􏾧𝑌𝑖:

􏾦𝑢𝑖 = 𝑌𝑖 − 􏾧𝑌𝑖 = 𝑌𝑖 − 􏾦𝛽􏷟 − 􏾦𝛽􏷠𝑋𝑖
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Fitted linear CEF
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Fitted linear CEF
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Fitted linear CEF
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Why not this line?
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Minimize the residuals

• The residuals, 􏾦𝑢𝑖 = 𝑌𝑖 − 􏾦𝛽􏷟 − 􏾦𝛽􏷠𝑋𝑖, tell us how well the line fits
the data.

▶ Larger magnitude residuals means that points are very far from
the line

▶ Residuals close to 0 mean points very close to the line
• The smaller the magnitude of the residuals, the better we are

doing at predicting 𝑌𝑖
• Choose the line that minimizes the residuals
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Which is better at minimizing
residuals?
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5/ Least Squares
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Minimizing the residuals

• Let 𝛽̃􏷟 and 𝛽̃􏷠 be possible values of the intercept and slope
• Least absolute deviations (LAD) regression:

(􏾦𝛽𝐿𝐴𝐷􏷟 , 􏾦𝛽𝐿𝐴𝐷􏷠 ) = argmin
𝛽̃􏷩,𝛽̃􏷪

𝑛
􏾜
𝑖=􏷠
|𝑌𝑖 − 𝛽̃􏷟 − 𝛽̃􏷠𝑋𝑖|

• Least squares (LS) regression:

(􏾦𝛽􏷟, 􏾦𝛽􏷠) = argmin
𝛽̃􏷩,𝛽̃􏷪

𝑛
􏾜
𝑖=􏷠
(𝑌𝑖 − 𝛽̃􏷟 − 𝛽̃􏷠𝑋𝑖)􏷡

• Sometimes called ordinary least squares (OLS)
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Why least squares?

Figure: Our man Gauss

• Easy to derive a closed-form expression
for the least squares estimator.

• East to investigate the properties of
the least squares estimator.

• Least squares is optimal in a certain
sense that we’ll see in the coming
weeks.
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Least squares and the mean

• Let’s derive a simpler least squares estimator first, for 􏾦𝐸[𝑌𝑖].
• 􏾧𝔼[𝑌𝑖] should be a good predictor of 𝑌𝑖.
• ⇝ find the value that minimizes the sum of squared

residuals (SSR)

𝑆(𝜇̃) =
𝑛
􏾜
𝑖=􏷠
(𝑌𝑖 − 𝜇̃)􏷡

• How do we solve this?
1. Calculate the derivative of 𝑆 with respect to 𝜇̃
2. Set the derivative equal to 0
3. Solve for 𝜇̃ and replace 𝜇̃ with the solution

• What does the sum of the squared residuals (SSR) function
look like?

54 / 71



Sum of the squared residuals
function

164 166 168 170 172 174 176

20
00

40
00

60
00

80
00

x

ss
r

55 / 71



Minimize the SSR

1. Calculate the derivative

𝑆(𝜇̃) =
𝑛
􏾜
𝑖=􏷠
(𝑌𝑖 − 𝜇̃)􏷡

=
𝑛
􏾜
𝑖=􏷠
(𝑌􏷡𝑖 − 2𝑌𝑖𝜇̃ + 𝜇̃􏷡)

𝜕𝑆(𝜇̃)
𝜕𝜇̃ =

𝑛
􏾜
𝑖=􏷠
(−2𝑌𝑖 + 2𝜇̃) (linearity + product rule)
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derivative
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Minimize the SSR
1. Calculate the derivative

𝑆(𝜇̃) =
𝑛
􏾜
𝑖=􏷠
(𝑌𝑖 − 𝜇̃)􏷡

𝜕𝑆(𝜇̃)
𝜕𝜇̃ =

𝑛
􏾜
𝑖=􏷠
(−2𝑌𝑖 + 2𝜇̃)

2. Setting it to zero:

0 =
𝑛
􏾜
𝑖=􏷠
(−2𝑌𝑖 + 2𝜇̃)

3. And solve:

􏾦𝜇 ≡ 𝜇̃ = 1
𝑛

𝑛
􏾜
𝑖=􏷠
𝑌𝑖
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Deriving the OLS estimator

• Now we want to estimate 𝔼[𝑌𝑖|𝑋𝑖 = 𝑥] = 𝛽􏷟 + 𝛽􏷠𝑥.
• 􏾧𝔼[𝑌𝑖|𝑋𝑖] = 􏾦𝛽􏷟 + 􏾦𝛽􏷠 should be a good predictor of 𝑌𝑖
• Let {𝛽̃􏷟, 𝛽̃􏷠} be candidate estimates for {𝛽􏷟, 𝛽􏷠}
• Define the least squares objective function:

𝑆(𝛽̃􏷟, 𝛽̃􏷠) =
𝑛
􏾜
𝑖=􏷠
(𝑌𝑖 − 𝛽̃􏷟 − 𝛽̃􏷠𝑋𝑖)􏷡.

• How do we derive the LS estimators for 𝛽􏷟 and 𝛽􏷠?
1. Take partial derivatives of 𝑆 with respect to 𝛽̃􏷟 and 𝛽̃􏷠.
2. Set each of the partial derivatives to 0
3. Solve for {𝛽̃􏷟, 𝛽̃􏷠} and replace them with the solutions
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Taking the partial derivatives

𝑆(𝛽̃􏷟, 𝛽̃􏷠) =
𝑛
􏾜
𝑖=􏷠
(𝑌𝑖 − 𝛽̃􏷟 − 𝛽̃􏷠𝑋𝑖)􏷡 (the SSR)

=
𝑛
􏾜
𝑖=􏷠
(𝑌􏷡𝑖 − 2𝑌𝑖𝛽̃􏷟 − 2𝑌𝑖𝛽̃􏷠𝑋𝑖 + 𝛽̃􏷡􏷟 + 2𝛽̃􏷟𝛽̃􏷠𝑋𝑖 + 𝛽̃􏷡􏷠𝑋􏷡

𝑖 )

(taking the product)

• Taking partial derivatives:

𝜕𝑆(𝛽̃􏷟, 𝛽̃􏷠)
𝜕𝛽̃􏷟

=
𝑛
􏾜
𝑖=􏷠
(−2𝑌𝑖 + 2𝛽̃􏷟 + 2𝛽̃􏷠𝑋𝑖)

𝜕𝑆(𝛽̃􏷟, 𝛽̃􏷠)
𝜕𝛽̃􏷠

=
𝑛
􏾜
𝑖=􏷠
(−2𝑌𝑖𝑋𝑖 + 2𝛽̃􏷟𝑋𝑖 + 2𝛽̃􏷠𝑋􏷡

𝑖 )
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First order conditions
• The first order conditions are when we set the derivatives

equal to 0:

0 =
𝑛
􏾜
𝑖=􏷠
(−2𝑌𝑖 + 2𝛽̃􏷟 + 2𝛽̃􏷠𝑋𝑖)

0 =
𝑛
􏾜
𝑖=􏷠
(−2𝑌𝑖𝑋𝑖 + 2𝛽̃􏷟𝑋𝑖 + 2𝛽̃􏷠𝑋􏷡

𝑖 )

• Now solving for 𝛽̃􏷟 and 𝛽̃􏷠 yields the normal equations:

􏾦𝛽􏷟𝑛 =

⎛
⎜⎜⎜⎜⎜⎝
𝑛
􏾜
𝑖=􏷠
𝑌𝑖

⎞
⎟⎟⎟⎟⎟⎠ − 􏾦𝛽􏷠

⎛
⎜⎜⎜⎜⎜⎝
𝑛
􏾜
𝑖=􏷠
𝑋𝑖

⎞
⎟⎟⎟⎟⎟⎠

􏾦𝛽􏷠
𝑛
􏾜
𝑖=􏷠
𝑋􏷡
𝑖 =

⎛
⎜⎜⎜⎜⎜⎝
𝑛
􏾜
𝑖=􏷠
𝑋𝑖𝑌𝑖

⎞
⎟⎟⎟⎟⎟⎠ − 􏾦𝛽􏷟

⎛
⎜⎜⎜⎜⎜⎝
𝑛
􏾜
𝑖=􏷠
𝑋𝑖

⎞
⎟⎟⎟⎟⎟⎠
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Normal equations and the OLS
estimator

• We can take the normal equations:

􏾦𝛽􏷟𝑛 =

⎛
⎜⎜⎜⎜⎜⎝
𝑛
􏾜
𝑖=􏷠
𝑌𝑖

⎞
⎟⎟⎟⎟⎟⎠ − 􏾦𝛽􏷠

⎛
⎜⎜⎜⎜⎜⎝
𝑛
􏾜
𝑖=􏷠
𝑋𝑖

⎞
⎟⎟⎟⎟⎟⎠

􏾦𝛽􏷠
𝑛
􏾜
𝑖=􏷠
𝑋􏷡
𝑖 =

⎛
⎜⎜⎜⎜⎜⎝
𝑛
􏾜
𝑖=􏷠
𝑋𝑖𝑌𝑖

⎞
⎟⎟⎟⎟⎟⎠ − 􏾦𝛽􏷟

⎛
⎜⎜⎜⎜⎜⎝
𝑛
􏾜
𝑖=􏷠
𝑋𝑖

⎞
⎟⎟⎟⎟⎟⎠

• And rearrange them to get the OLS estimators:
􏾦𝛽􏷟 = 𝑌 − 􏾦𝛽􏷠𝑋

􏾦𝛽􏷠 =
∑𝑛
𝑖=􏷠(𝑋𝑖 − 𝑋)(𝑌𝑖 − 𝑌)
∑𝑛
𝑖=􏷠(𝑋𝑖 − 𝑋)􏷡

• Let’s see how we get these!
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Normal equations to OLS
estimators

• For the intercept, just divide by 𝑛:

􏾦𝛽􏷟𝑛 =

⎛
⎜⎜⎜⎜⎜⎝
𝑛
􏾜
𝑖=􏷠
𝑌𝑖

⎞
⎟⎟⎟⎟⎟⎠ − 􏾦𝛽􏷠

⎛
⎜⎜⎜⎜⎜⎝
𝑛
􏾜
𝑖=􏷠
𝑋𝑖

⎞
⎟⎟⎟⎟⎟⎠

􏾦𝛽􏷟
𝑛
𝑛 =

⎛
⎜⎜⎜⎜⎜⎝
1
𝑛

𝑛
􏾜
𝑖=􏷠
𝑌𝑖

⎞
⎟⎟⎟⎟⎟⎠ − 􏾦𝛽􏷠

⎛
⎜⎜⎜⎜⎜⎝
1
𝑛

𝑛
􏾜
𝑖=􏷠
𝑋𝑖

⎞
⎟⎟⎟⎟⎟⎠

􏾦𝛽􏷟 = 𝑌 − 􏾦𝛽􏷠𝑋
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Normal equations to OLS
estimators

• Now, for the slope, we need to rearrange a bit:
􏾦𝛽􏷟 = 𝑌 − 􏾦𝛽􏷠𝑋

􏾦𝛽􏷟

⎛
⎜⎜⎜⎜⎜⎝
𝑛
􏾜
𝑖=􏷠
𝑋𝑖

⎞
⎟⎟⎟⎟⎟⎠ = 𝑌

⎛
⎜⎜⎜⎜⎜⎝
𝑛
􏾜
𝑖=􏷠
𝑋𝑖

⎞
⎟⎟⎟⎟⎟⎠ − 􏾦𝛽􏷠𝑋

⎛
⎜⎜⎜⎜⎜⎝
𝑛
􏾜
𝑖=􏷠
𝑋𝑖

⎞
⎟⎟⎟⎟⎟⎠

• Plug this into the second normal equation:

􏾦𝛽􏷠
𝑛
􏾜
𝑖=􏷠
𝑋􏷡
𝑖 =

⎛
⎜⎜⎜⎜⎜⎝
𝑛
􏾜
𝑖=􏷠
𝑋𝑖𝑌𝑖

⎞
⎟⎟⎟⎟⎟⎠ − 􏾦𝛽􏷟

⎛
⎜⎜⎜⎜⎜⎝
𝑛
􏾜
𝑖=􏷠
𝑋𝑖

⎞
⎟⎟⎟⎟⎟⎠

􏾦𝛽􏷠
𝑛
􏾜
𝑖=􏷠
𝑋􏷡
𝑖 =

⎛
⎜⎜⎜⎜⎜⎝
𝑛
􏾜
𝑖=􏷠
𝑋𝑖𝑌𝑖

⎞
⎟⎟⎟⎟⎟⎠ − 𝑌

⎛
⎜⎜⎜⎜⎜⎝
𝑛
􏾜
𝑖=􏷠
𝑋𝑖

⎞
⎟⎟⎟⎟⎟⎠ + 􏾦𝛽􏷠𝑋

⎛
⎜⎜⎜⎜⎜⎝
𝑛
􏾜
𝑖=􏷠
𝑋𝑖

⎞
⎟⎟⎟⎟⎟⎠

􏾦𝛽􏷠
𝑛
􏾜
𝑖=􏷠
𝑋􏷡
𝑖 =

⎛
⎜⎜⎜⎜⎜⎝
𝑛
􏾜
𝑖=􏷠
𝑋𝑖𝑌𝑖

⎞
⎟⎟⎟⎟⎟⎠ −

⎛
⎜⎜⎜⎜⎜⎝
𝑛
􏾜
𝑖=􏷠
𝑌𝑋𝑖

⎞
⎟⎟⎟⎟⎟⎠ + 􏾦𝛽􏷠

⎛
⎜⎜⎜⎜⎜⎝
𝑛
􏾜
𝑖=􏷠
𝑋𝑋𝑖

⎞
⎟⎟⎟⎟⎟⎠
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• Let’s rearrange:

􏾦𝛽􏷪
𝑛
􏾜
𝑖=􏷪
𝑋􏷫
𝑖 =

⎛
⎜⎜⎜⎜⎜⎝
𝑛
􏾜
𝑖=􏷪
𝑋𝑖𝑌𝑖

⎞
⎟⎟⎟⎟⎟⎠ −

⎛
⎜⎜⎜⎜⎜⎝
𝑛
􏾜
𝑖=􏷪
𝑌𝑋𝑖

⎞
⎟⎟⎟⎟⎟⎠ + 􏾦𝛽􏷪

⎛
⎜⎜⎜⎜⎜⎝
𝑛
􏾜
𝑖=􏷪
𝑋𝑋𝑖

⎞
⎟⎟⎟⎟⎟⎠

􏾦𝛽􏷪
𝑛
􏾜
𝑖=􏷪
􏿴𝑋􏷫

𝑖 − 𝑋𝑋𝑖􏿷 =
𝑛
􏾜
𝑖=􏷪
􏿴𝑋𝑖𝑌𝑖 − 𝑌𝑋𝑖􏿷

􏾦𝛽􏷪
𝑛
􏾜
𝑖=􏷪
𝑋𝑖 􏿴𝑋𝑖 − 𝑋􏿷 =

𝑛
􏾜
𝑖=􏷪
𝑋𝑖(𝑌𝑖 − 𝑌)

• Remember that deviations from the mean sum to 0:
∑𝑛
𝑖=􏷠(𝑍𝑖 − 𝑍) = 0

􏾦𝛽􏷪
𝑛
􏾜
𝑖=􏷪
𝑋𝑖 􏿴𝑋𝑖 − 𝑋􏿷 − 􏾦𝛽􏷪𝑋

𝑛
􏾜
𝑖=􏷪
􏿴𝑋𝑖 − 𝑋􏿷

􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏿍
=􏷩

=
𝑛
􏾜
𝑖=􏷪
𝑋𝑖(𝑌𝑖 − 𝑌) − 𝑋

𝑛
􏾜
𝑖=􏷪
(𝑌𝑖 − 𝑌)

􏿋􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏿍
=􏷩

􏾦𝛽􏷪
𝑛
􏾜
𝑖=􏷪
􏿴𝑋𝑖(𝑋𝑖 − 𝑋) − 𝑋(𝑋𝑖 − 𝑋)􏿷 =

𝑛
􏾜
𝑖=􏷪
􏿴𝑋𝑖(𝑌𝑖 − 𝑌) − 𝑋(𝑌𝑖 − 𝑌)􏿷

􏾦𝛽􏷪
𝑛
􏾜
𝑖=􏷪
􏿴𝑋𝑖 − 𝑋􏿷 􏿴𝑋𝑖 − 𝑋􏿷 =

𝑛
􏾜
𝑖=􏷪
(𝑋𝑖 − 𝑋 𝑖)(𝑌𝑖 − 𝑌)
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OLS estimators

• Isolate 􏾦𝛽􏷠 to get the OLS estimator for the slope:

􏾦𝛽􏷠 =
∑𝑛
𝑖=􏷠(𝑋𝑖 − 𝑋)(𝑌𝑖 − 𝑌)
∑𝑛
𝑖=􏷠(𝑋𝑖 − 𝑋)􏷡

• Note that this is the following:

􏾦𝛽􏷠 =
Sample Covariance between 𝑋 and 𝑌

Sample Variance of 𝑋

• Combine this with the intercept estimator:

􏾦𝛽􏷟 = 𝑌 − 􏾦𝛽􏷠𝑋
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AJR Example in R
• Let’s use those simple formulas we just learned:

ajr <- na.omit(ajr[, c("logem4", "logpgp95")])
cov.xy <- cov(ajr$logem4, ajr$logpgp95)
var.x <- var(ajr$logem4)
cov.xy/var.x

## [1] -0.5641

mean(ajr$logpgp95) - cov.xy/var.x * mean(ajr$logem4)

## [1] 10.66

• Compare it to what lm(), the OLS function in R produces:

coef(lm(logpgp95 ~ logem4, data = ajr))

## (Intercept) logem4
## 10.6602 -0.5641
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Mechanical properties of least
squares

• The residuals will be 0 on average:
𝑛
􏾜
𝑖=􏷠

􏾦𝑢𝑖 = 0

• The residuals will be uncorrelated with the predictor:
𝑛
􏾜
𝑖=􏷠
𝑋𝑖􏾦𝑢𝑖 = 0⇝ 􏾨Cov(𝑋𝑖, 􏾦𝑢𝑖) = 0

• The residuals will be uncorrelated with the fitted values:
𝑛
􏾜
𝑖=􏷠

􏾧𝑌𝑖􏾦𝑢𝑖 = 0⇝ 􏾨Cov(􏾧𝑌𝑖, 􏾦𝑢𝑖) = 0
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Mechanical properties of least
squares in R

mod <- lm(logpgp95 ~ logem4, data = ajr)
mean(residuals(mod))

## [1] -2.624e-18

cor(ajr$logem4, residuals(mod))

## [1] -3.185e-17

cor(fitted(mod), residuals(mod))

## [1] -1.16e-16
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