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Propensity score weighting

Post-treatment bias



Where are we? Where are we going?

• Discussed randomized experiments, started talking about
observational data.

• Last week: matching under no unmeasured confoudners.
• This week: propensity score weighting, posttreatment bias.
• Coming weeks: regression for causal inference, what happens

when n.u.c. doesn’t hold.



1/ Propensity score
weighting



Weighting

• Next of the ways to estimate the ATE under no unmeasured
confounders.

• Intuition
▶ Treated and control samples are unrepresentative of the overall

population.
▶ Leads to imbalance in the covariates.
▶ Reweight them to be more representative.



Survey samples

• Useful to review survey samples to understand the logic
• Finite population: {1, … ,𝑁}
• Suppose that we wanted estimate the population mean of 𝑌𝑖:

𝑌̅𝑁 = 1
𝑁

𝑁
􏾜
𝑖=􏷠
𝑌𝑖

• We have a sample of size 𝑛, where 𝑍𝑖 = 1 indicates that 𝑖 is
included in the sample.

• Unequal sampling probability: ℙ(𝑍𝑖 = 1) = 𝜋𝑖
▶ ⇝ sample is not representative.
▶ ∑𝑁

𝑖=􏷠 𝜋𝑖 = 𝑛



Survey weights

• Sample mean is biased:

𝔼

⎡
⎢⎢⎢⎢⎢⎣
1
𝑛

𝑁
􏾜
𝑖=􏷠
𝑍𝑖𝑌𝑖

⎤
⎥⎥⎥⎥⎥⎦ =

1
𝑛
􏾜
𝑖=􏷠
𝜋𝑖𝑌𝑖

• Inverse probability weighting: To correct, weight each unit
by the reciprocal of the probability of being included in the
sample: 𝑌𝑖/𝜋𝑖.

• Horvitz-Thompson estimator is unbiased:

𝔼

⎡
⎢⎢⎢⎢⎢⎣
1
𝑁

𝑁
􏾜
𝑖=􏷠

𝑍𝑖𝑌𝑖
𝜋𝑖

⎤
⎥⎥⎥⎥⎥⎦ =

1
𝑁

𝑁
􏾜
𝑖=􏷠

𝔼[𝑍𝑖]𝑌𝑖
𝜋𝑖

= 1
𝑁

𝑁
􏾜
𝑖=􏷠

𝜋𝑖𝑌𝑖
𝜋𝑖

= 𝑌̅𝑁

• Reweights the sample to be representative of the population.



Back to causal effects

• With a completely randomized experiment, we can just use
the simple differences in means:

𝔼[𝑌𝑖|𝐷𝑖 = 1] − 𝔼[𝑌𝑖|𝐷𝑖 = 0] = 𝔼[𝑌𝑖(1)] − 𝔼[𝑌𝑖(0)]

• With no unmeasured confounders, we need to adjust for 𝑋𝑖.

𝔼[𝑌𝑖(𝑑)] = 𝔼 [𝔼[𝑌𝑖(𝑑)|𝑋𝑖]]
= 􏾜
𝑥∈𝒳

𝔼[𝑌𝑖(𝑑)|𝑋𝑖 = 𝑥]ℙ(𝑋𝑖 = 𝑥)

= 􏾜
𝑥∈𝒳

𝔼[𝑌𝑖(𝑑)|𝐷𝑖 = 𝑑,𝑋𝑖 = 𝑥]ℙ(𝑋𝑖 = 𝑥)

= 􏾜
𝑥∈𝒳

𝔼[𝑌𝑖|𝐷𝑖 = 𝑑,𝑋𝑖 = 𝑥]ℙ(𝑋𝑖 = 𝑥)

• With subclassification, we binned 𝑋𝑖, calclulated within-bin
differences and then averaged across the bins, just like this.



Searching for the weights

𝔼[𝑌𝑖(𝑑)] = 􏾜
𝑥∈𝒳

𝔼[𝑌𝑖|𝐷𝑖 = 𝑑,𝑋𝑖 = 𝑥]ℙ(𝑋𝑖 = 𝑥)

• Compare this to the the within treatment group average:

𝔼[𝑌𝑖|𝐷𝑖 = 𝑑] = 􏾜
𝑥∈𝒳

𝔼[𝑌𝑖|𝐷𝑖 = 𝑑,𝑋𝑖 = 𝑥]ℙ(𝑋𝑖 = 𝑥|𝐷𝑖 = 𝑑)

= 􏾜
𝑥∈𝒳

𝔼[𝑌𝑖|𝐷𝑖 = 𝑑,𝑋𝑖 = 𝑥]
ℙ(𝐷𝑖 = 𝑑|𝑋𝑖 = 𝑥)ℙ(𝑋𝑖 = 𝑥)

ℙ(𝐷𝑖 = 𝑑)

• How should we reweight the data from an observational study?
• If we were to reweight the data by 𝑊𝑖 = 1/ℙ(𝐷𝑖 = 𝑑|𝑋𝑖), then

we would break the relationship between 𝐷𝑖 and 𝑋𝑖.



Weights

• Single binary covariate. Define the weight function:

𝑤(𝑑, 𝑥) = 1
𝑒(𝑥)𝑑(1 − 𝑒(𝑥))􏷠−𝑑

• To get the weight for 𝑖, plug in observed treatment, covariate:
𝑊𝑖 = 𝑤(𝐷𝑖, 𝑋𝑖)

• If (𝐷𝑖, 𝑋𝑖) = (1, 1),

𝑊𝑖 =
1
𝑒(1) =

1
ℙ(𝐷𝑖 = 1|𝑋𝑖 = 1)

• If (𝐷𝑖, 𝑋𝑖) = (0, 0):

𝑊𝑖 =
1

1 − 𝑒(0) =
1

ℙ(𝐷𝑖 = 0|𝑋𝑖 = 0)



Example

𝑋𝑖 = 0 𝑋𝑖 = 1
𝐷𝑖 = 0 4 3
𝐷𝑖 = 1 4 9

• ℙ(𝐷𝑖 = 1|𝑋𝑖 = 0) = 0.5
• ℙ(𝐷𝑖 = 1|𝑋𝑖 = 1) = 0.75
• Weights:

𝑋𝑖 = 0 𝑋𝑖 = 1
𝐷𝑖 = 0 1/0.5 1/0.25
𝐷𝑖 = 1 1/0.5 1/0.75

• Weighted data (the pseudo-population):
𝑋𝑖 = 0 𝑋𝑖 = 1

𝐷𝑖 = 0 8 12
𝐷𝑖 = 1 8 12

• ℙ𝑊 (𝐷𝑖 = 1|𝑋𝑖 = 𝑥) = 0.5 for all 𝑥



Properties of reweighted data

• Let’s calculate the weighted probability that 𝐷𝑖 = 1.

ℙ𝑊 [𝐷𝑖 = 1|𝑋𝑖 = 𝑥]

= 𝑤(1, 𝑥) ⋅ ℙ[𝐷𝑖 = 1|𝑋𝑖 = 𝑥]
𝜔∗

=
􏷠

ℙ[𝐷𝑖=􏷠|𝑋𝑖=𝑥]
⋅ ℙ[𝐷𝑖 = 1|𝑋𝑖 = 𝑥]
𝜔∗

= 1
𝜔∗ .

• 𝜔∗ is a normalization factor to make sure probabilities sum to
1.

• Important point: ℙ𝑊 (𝐷𝑖 = 1|𝑋𝑖 = 1) = ℙ𝑊 (𝐷𝑖 = 1|𝑋𝑖 = 0) = 􏷠
𝜔∗

• ⇝ 𝐷𝑖 independent of 𝑋𝑖 in the reweighted data.



Overall mean

• What is the weighted mean for the treated group?
• Use a similar approach to survey weights, where 𝐷𝑖 is the

“sampling indicator”:

𝑌̅𝑤𝑖 =
1
𝑁

𝑁
􏾜
𝑖=􏷠
𝐷𝑖𝑊𝑖𝑌𝑖

• 𝑊𝑖𝑌𝑖 is the weighted outcome, 𝐷𝑖 is there to select out the
treated observations.

• We want to see what the conditional weighted mean identifies:

𝔼

⎡
⎢⎢⎢⎢⎢⎣
1
𝑁

𝑁
􏾜
𝑖=􏷠
𝑊𝑖𝐷𝑖𝑌𝑖

⎤
⎥⎥⎥⎥⎥⎦ =

1
𝑁

𝑁
􏾜
𝑖=􏷠
𝔼[𝑊𝑖𝐷𝑖𝑌𝑖] = 𝔼[𝑊𝑖𝐷𝑖𝑌𝑖]



Proving unbiasedness

• Weighted mean of treated units is mean of potential outcome:

𝔼[𝑊𝑖𝐷𝑖𝑌𝑖] = 𝔼 􏿰
𝐷𝑖𝑌𝑖
𝑒(𝑋𝑖)

􏿳 (Weight Def.)

= 𝐸 􏿰
𝐷𝑖𝑌𝑖(1)
𝑒(𝑋𝑖)

􏿳 (Consistency)

= 𝐸 􏿰𝐸 􏿰
𝐷𝑖𝑌𝑖(1)
𝑒(𝑋𝑖)

|𝑋𝑖􏿳􏿳 (Iterated Expectations)

= 𝐸 􏿰
𝐸[𝐷𝑖|𝑋𝑖]𝐸[𝑌𝑖(1)|𝑋𝑖]

𝑒(𝑋𝑖)
􏿳 (n.u.c.)

= 𝐸 􏿰
𝑒(𝑋𝑖)𝐸[𝑌𝑖(1)|𝑋𝑖]

𝑒(𝑋𝑖)
􏿳 (Propensity Score Definition)

= 𝐸[𝑌𝑖(1)] (Iterated Expectations)



Putting it all together

• The same logic would give us the mean potential outcomes
under control:

𝐸 􏿰
(1 − 𝐷𝑖)𝑌𝑖
1 − 𝑒(𝑋𝑖)

􏿳 = 𝐸[𝑌𝑖(0)]

• These two facts provide an estimator for the average
treatment effect:

𝜏̂ = 1
𝑁

𝑁
􏾜
𝑖=􏷠
􏿶
𝐷𝑖𝑌𝑖
𝑒(𝑋𝑖)

− (1 − 𝐷𝑖)𝑌𝑖
1 − 𝑒(𝑋𝑖)

􏿹

• The above two results give us that this esimator is unbiased.
• This is sometimes called the Horvitz-Thompson estimator

due to the close connection to the survey sampling estimator.



Estimation of the propensity score

𝜏̂ = 1
𝑁

𝑁
􏾜
𝑖=􏷠
􏿶
𝐷𝑖𝑌𝑖
𝑒(𝑋𝑖)

− (1 − 𝐷𝑖)𝑌𝑖
1 − 𝑒(𝑋𝑖)

􏿹

• Need to know or estimate the propensity score, 𝑒(𝑋𝑖). How do
we do that?

• Discrete covariates estimate the within-strata propensity
scores

𝑒̂(𝑥) = 𝑁𝑥𝑑
𝑁𝑥

▶ Non-parametric estimate of the propensity score in each
stratum of the data.

• Continuous covariates ⇝ Logistic regression of 𝐷𝑖 on 𝑋𝑖.



Estimated versus known pscores
ht.est <- function(y, d, w) {

n <- length(y)

(1/n) * sum((y * d * w) - (y * (1 - d) * w))

}

n <- 200

x <- rbinom(n, size = 1, prob = 0.5)

dprobs <- 0.5 * x + 0.4 * (1 - x)

d <- rbinom(n, size = 1, prob = dprobs)

y <- 5 * d - 10 * x + rnorm(n, sd = 5)

true.w <- ifelse(d == 1, 1/dprobs, 1/(1 - dprobs))

pprobs <- predict(glm(d ~ x))

est.w <- ifelse(d == 1, 1/pprobs, 1/(1 - pprobs))

ht.est(y, d, est.w)

## [1] 5.1

ht.est(y, d, true.w)

## [1] 5.5



Sampling distribution of the HT
estimators

sims <- 10000

true.holder <- rep(NA, sims)

est.holder <- rep(NA, sims)

for (i in 1:sims) {

x <- rbinom(n, size = 1, prob = 0.5)

dprobs <- 0.5 * x + 0.4 * (1 - x)

d <- rbinom(n, size = 1, prob = dprobs)

y <- 5 * d - 10 * x + rnorm(n, sd = 5)

true.w <- ifelse(d == 1, 1/dprobs, 1/(1 - dprobs))

pprobs <- predict(glm(d ~ x))

est.w <- ifelse(d == 1, 1/pprobs, 1/(1 - pprobs))

est.holder[i] <- ht.est(y, d, est.w)

true.holder[i] <- ht.est(y, d, true.w)

}



Sampling distribution of the HT
estimators

2 4 6 8

Estimated Pscore

True Pscore

var(est.holder)

## [1] 0.52

var(true.holder)

## [1] 1.2



Why use estimated pscores?

• Why does the estimated propensity score do better than the
true propensity score?

• Removing chance variations using 𝑒̂(𝑋𝑖) adjusts for any
small imbalances that arise because of a finite sample.

• The true p-score only adjusts for the expected differences
between samples.



Distribution of X in the weighed data

ht.est(x, d, est.w)

## [1] 8.1e-16

ht.est(x, d, true.w)

## [1] -0.2



Positivity violations

• Remember the positivity assumption:

0 < 𝑝(𝐷𝑖 = 1|𝑋𝑖) < 1

• What happens to the weights if this is violated? Then,
𝑒̂(𝑥) = 0 or 𝑒̂(𝑥) = 1 and

1
𝑒̂(𝑥) =

1
0 = ∞

• Structural ⇝ population probability is 0.
• Random ⇝ sample probability is 0.

▶ Need to “borrow” information from other values of 𝑋𝑖 to
estimate 𝑒(𝑋𝑖)

▶ ⇝ modeling via logit, etc.



Automated approaches

• Challenge: specifying the propensity score model.

𝑒̂(𝑋𝑖) = logit−􏷠(𝑋′
𝑖 𝛽)

• What terms should we include?
• Big problem for weights: small changes to PS model lead to

big changes in the weights.
• Entropy balancing (Hainmueller 2012):

▶ Choose weights for each observation that maximize the
balance between treatment and control groups.

• Covariate Balancing Propensity Scores (Imai and Ratkovic):
▶ Estimate the propensity score subject to the additional

constraint of maximizing balance.



Boostrapping to get the SEs

• How to get the standard error for 𝜏̂?
• Variance estimators are messy ⇝ use the bootstrap!

1. Draw a sample of the data with replacement, call this, 𝑆𝑏.
2. Estimate the propensity scores in this sample, 𝑒̂𝑏 and create

weights, 𝑊𝑏.
3. Use the weights to get an estimate of the average treatment

effect, 𝜏𝑏 in the sample 𝑆𝑏.
4. Repeat.

• The distribution of the estimates, 𝜏̂𝑏, will give us the
bootstrapped standard errors and confidence intervals.



Bootstrap in R
mydata <- data.frame(y, d, x)

boots <- 1000

b.holder <- rep(NA)

for (i in 1:boots) {

S.b <- sample(1:n, size = n, replace = TRUE)

data.b <- mydata[S.b, ]

pprobs <- predict(glm(d ~ x, data = data.b))

est.w <- ifelse(data.b$d == 1, 1/pprobs, 1/(1 -

pprobs))

b.holder[i] <- ht.est(data.b$y, data.b$d, est.w)

}

• Compare bootstrapped variance to true sampling variance:

var(b.holder)

## [1] 0.51

var(est.holder)

## [1] 0.52



Reducing weight variation
• 𝑒(𝑋𝑖) close to 0 or 1 lead to very large weights, high standard

errors.
• Potential solutions:

1. Trimming/Windsorizing the weights
▶ Pick some value 𝑤′ and create trimmed weights which are:

𝑊 ′
𝑖 =

⎧⎪⎪⎨
⎪⎪⎩
𝑊𝑖 if 𝑊𝑖 < 𝑤′

𝑤′ if 𝑊𝑖 ≥ 𝑤′

2. Stabilized weights
▶ We can actually put any other function of the treatment vector

in the numerator, which can reduce the variation in the
weights.

▶ We call these stabilized weights:

𝑠𝑤(𝑑, 𝑥) = ℙ[𝐷𝑖 = 1]𝑑(1 − ℙ[𝐷𝑖 = 1])􏷠−𝑑
𝑒(𝑥)𝑑(1 − 𝑒(𝑥))􏷠−𝑑



Stablized weights
• With a binary treatment, we can implement the stabilized

weight by normalizing the weights:

𝑆𝑊𝑖 =
𝑊𝑖

∑𝑁
𝑖=􏷠𝑊𝑖

• This leads to the following estimator:

𝜏̂𝐼𝑃𝑇𝑊 = 1
∑𝑁
𝑖=􏷠𝑊𝑖𝐷𝑖

𝑁
􏾜
𝑖=􏷠
𝑊𝑖𝐷𝑖𝑌𝑖 −

1
∑𝑁
𝑖=􏷠𝑊𝑖(1 − 𝐷𝑖)

𝑁
􏾜
𝑖=􏷠
𝑊𝑖(1 − 𝐷𝑖)𝑌𝑖

= 1
∑𝑁
𝑖=􏷠𝐷𝑖/𝑒̂(𝑋𝑖)

𝑁
􏾜
𝑖=􏷠

𝐷𝑖𝑌𝑖
𝑒̂(𝑋𝑖)

− 1
∑𝑁
𝑖=􏷠(1 − 𝐷𝑖)/(1 − 𝑒̂(𝑋𝑖))

𝑁
􏾜
𝑖=􏷠

(1 − 𝐷𝑖)𝑌𝑖
1 − 𝑒̂(𝑋𝑖)

• These are the means that the weighted.mean() function in R
calculates. It normalizes the weights before calculating the
mean.



Stablized weights

n <- 1000

sims <- 10000

est2.holder <- rep(NA, sims)

sw.holder <- rep(NA, sims)

for (i in 1:sims) {

x <- rnorm(n)

dprobs <- boot::inv.logit(-1 + x)

d <- rbinom(n, size = 1, prob = dprobs)

y <- 5 * d - 10 * x + rnorm(n, sd = 5)

pprobs <- glm(d ~ x, family = binomial())$fitted

est.w <- ifelse(d == 1, 1/pprobs, 1/(1 - pprobs))

est2.holder[i] <- ht.est(y, d, est.w)

sw.holder[i] <- weighted.mean(y[d == 1], est.w[d ==

1]) - weighted.mean(y[d == 0], est.w[d == 0])

}



Stabilized weights

4 6 8 10 12 14

IPTW (stablized)

Horvitz-Thompson

var(est2.holder)

## [1] 0.78

var(sw.holder)

## [1] 0.59



Distribution of the weights

0 5 10 15 20 25 30

Stablized

Raw

tail(est.w[order(est.w)])

## [1] 12 13 13 14 14 33

tail(est.sw[order(est.sw)])

## [1] 3.9 3.9 4.0 4.1 4.3 9.9



2/ Post-treatment
bias



Post-treatment bias

• Rule of matching/weighting/regression: don’t condition on
posttreatment variables.

• Usual intuition:
▶ You might “control away” part of the effect of 𝐷𝑖 on 𝑌𝑖 that

“flows through” 𝑍𝑖 where 𝑍𝑖 is the posttreatment variable.
▶ Can be misleading.

• Two big problems with conditioning on these:
▶ Changes the quantity of interest (see above).
▶ Induces selection bias.

• We’ll go through Rosenbaum (1984) logic.



Setup

• Posttreatment variable 𝑍𝑖
• Has potential outcomes because it is affected by treatment:
(𝑍𝑖(1), 𝑍𝑖(0)).

• Consistency for the posttreatment variable:

𝑍𝑖 = 𝐷𝑖𝑍𝑖(1) + (1 − 𝐷𝑖)𝑍𝑖(0)

• Example:
▶ Effect of campaign negativity (𝐷𝑖) fixing polling later in the

campaign (𝑍𝑖)



Assumptions and estimators

• Assume no unmeasured confounders:

􏿴𝑌𝑖(1), 𝑌𝑖(0)􏿷 ⟂⟂ 𝐷𝑖|𝑋𝑖

• Usually estimate the CATE:

𝜏(𝑥) = 𝐸[𝑌𝑖|𝐷𝑖 = 1,𝑋𝑖 = 𝑥] − 𝐸[𝑌𝑖|𝐷𝑖 = 0,𝑋𝑖 = 𝑥]

• Average to get the ATE: 𝜏 = 𝐸[𝜏(𝑋𝑖)].



Condition on a posttreatment variable

• What happens when we control for the post-treatment
variable:

Δ(𝑥, 𝑧) = 𝐸[𝑌𝑖|𝐷𝑖 = 1, 𝑍𝑖 = 𝑧,𝑋𝑖 = 𝑥] − 𝐸[𝑌𝑖|𝐷𝑖 = 0, 𝑍𝑖 = 𝑧,𝑋𝑖 = 𝑥]
= 𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑍𝑖 = 𝑧,𝑋𝑖 = 𝑥] − 𝐸[𝑌𝑖(0)|𝐷𝑖 = 0, 𝑍𝑖 = 𝑧,𝑋𝑖 = 𝑥]
= 𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑍𝑖(1) = 𝑧, 𝑋𝑖 = 𝑥] − 𝐸[𝑌𝑖(0)|𝐷𝑖 = 0, 𝑍𝑖(0) = 𝑧, 𝑋𝑖 = 𝑥]

• Average these over the distribution of (𝑋, 𝑍): Δ = 𝐸[Δ(𝑋, 𝑍)].
• Compare this estimator Δ to the average treatment effect 𝜏.



Controlled direct effect

• Define the net treatment difference 𝜈(𝑥, 𝑧):

𝜈(𝑥, 𝑧) = 𝐸[𝑌𝑖(1)|𝑍𝑖(1) = 𝑧, 𝑋𝑖 = 𝑥] − 𝐸[𝑌𝑖(0)|𝑍𝑖(0) = 𝑧, 𝑋𝑖 = 𝑥]

• Similar to the controlled direct effect, or the effect of 𝐷𝑖
fixing 𝑍𝑖(1) = 𝑍𝑖(0) = 𝑧, removing the arrow from 𝐷𝑖 to 𝑍𝑖:

𝐷

𝑍

𝑌

• Intuitively (if not precisely): if 𝜈(𝑥, 𝑧) = 0 and 𝜏 > 0, the effect
of 𝐷𝑖 on 𝑌𝑖 flows entirely through 𝑍𝑖.

• Again, we’ll take the average over (𝑋𝑖, 𝑍𝑖): 𝜈 = 𝐸[𝜈(𝑋𝑖, 𝑍𝑖)].



Posttreatment bias decomposition

Δ − 𝜏 = (Δ − 𝜈)􏿋􏻰􏻰􏿌􏻰􏻰􏿍
bias for NTD

+ (𝜈 − 𝜏)􏿋􏻰􏻰􏿌􏻰􏻰􏿍
change in QoI

• The bias of Δ is two terms.
• (Δ − 𝜈) measures our inability to estimate the net treatment

difference.
• Why? Maybe 𝑍𝑖 is a collider. If we condition on 𝑍𝑖, it opens a

backdoor path between 𝐷𝑖 and 𝑌𝑖:

𝐷

𝑈 𝑍

𝑌

• In this case, conditioning on 𝑍 opens the backdoor path from
𝐷 ← 𝑈 → 𝑍 ← 𝑌. Thus, (Δ − 𝜈) represents the bias due to
unmeasured confounding between 𝐷𝑖 and 𝑍𝑖.



Posttreatment bias

Δ − 𝜏 = (Δ − 𝜈)􏿋􏻰􏻰􏿌􏻰􏻰􏿍
bias for NTD

+ (𝜈 − 𝜏)􏿋􏻰􏻰􏿌􏻰􏻰􏿍
change in QoI

• (𝜈 − 𝜏): difference between the net treatment difference and
the average treatment effect.

• The change in the quantity of interest.
• Might call this the effect of intervening on 𝑍𝑖.
• Under some conditions, this difference can be thought of as

the indirect effect of 𝐷𝑖 on 𝑌𝑖 through 𝑍𝑖, but not always.
▶ ⇝ Causal mediation/mechanisms
▶ Very tricky assumptions, we’ll talk about later.



Conditions that eliminate
post-treatment bias

• When will there be no posttreatment bias?
• Under two assumptions:

1. No unmeasured confounders for post-treatment variable:

(𝑌𝑖(0), 𝑍𝑖(0), 𝑌𝑖(1), 𝑍𝑖(1)) ⟂⟂ 𝐷𝑖|𝑋𝑖

2. No effect of treatment on the post-treatment variable:
𝑍𝑖(1) = 𝑍𝑖(0) = 𝑍𝑖 for all units.



No unmeasured confounders, II

􏿴𝑌𝑖(0), 𝑍𝑖(0), 𝑌𝑖(1), 𝑍𝑖(1)􏿷 ⟂⟂ 𝐷𝑖|𝑋𝑖

• This extends no unmeasured confounders to the
post-treatment variable.

• Most likely satisfied under randomization.
• Implies that Δ = 𝜈. Why?

▶ No unblocked backdoor paths from 𝐷𝑖 to 𝑍𝑖
▶ ⇝ 𝑍𝑖 cannot be a collider on a back-door path.
▶ No collider bias for NTD

• Still could change the quantity of interest.

𝐷

𝑋 𝑍

𝑌



No effect on Z

• No effect of treatment on the post-treatment variable:
𝑍𝑖(1) = 𝑍𝑖(0) = 𝑍𝑖 for all units.

• Under this condition, we have NTD = ATE.
▶ The effect of 𝐷𝑖 cannot go through 𝑍𝑖 since it doesn’t affect 𝑍𝑖:

𝜈(𝑥, 𝑧) = 𝔼[𝑌(1)|𝑍(1) = 𝑧, 𝑋 = 𝑥] − 𝔼[𝑌(0)|𝑍(0) = 𝑧, 𝑋 = 𝑥]
= 𝔼[𝑌(1) − 𝑌(0)|𝑍 = 𝑧, 𝑋 = 𝑥].

• So that when we take the average over (𝑋𝑖, 𝑍𝑖), we get 𝜈 = 𝜏.
In this case the above DAGs would be:

𝐷

𝑋 𝑍

𝑌 𝐷

𝑋 𝑍

𝑌

• Essentially assumes 𝑍𝑖 is pretreatment.



Posttreatment bias overview

• Found two assumptions under which condition on 𝑍𝑖 doesn’t
matter.

• But, these two assumptions buy us nothing:
▶ Requires no unmeasured confounders ⇝ could have estimated

the ATE in the usual way.



Simulation

𝐷 𝑈

𝑍 𝑌

## Post-treatment bias simulation

set.seed(14627)

d <- rnorm(500, 50, 15)

u <- rnorm(500, 50, 15)

z <- rnorm(500, 0.5 * d + 0.5 * u, 5)

y <- rnorm(500, 75 + -0.5 * u, 5)

sub <- z > 60 & z < 70



Posttreatment bias example
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Posttreatment bias example
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