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Propensity score weighting

Post-treatment bias



Where are we? Where are we going?

= Discussed randomized experiments, started talking about
observational data.

= Last week: matching under no unmeasured confoudners.

= This week: propensity score weighting, posttreatment bias.

= Coming weeks: regression for causal inference, what happens
when n.u.c. doesn't hold.



1/ Propensity score
weighting



Weighting

= Next of the ways to estimate the ATE under no unmeasured
confounders.

= [ntuition

» Treated and control samples are unrepresentative of the overall
population.

» Leads to imbalance in the covariates.
» Reweight them to be more representative.



Survey samples

= Useful to review survey samples to understand the logic
= Finite population: {1,..,N}
= Suppose that we wanted estimate the population mean of Y;:

| i
Yy==),Y;
NG
= We have a sample of size n, where Z; = 1 indicates that i is
included in the sample.
= Unequal sampling probability: IP(Z; = 1) = 7;

» ~~ sample is not representative.
N
> L =



Survey weights

= Sample mean is biased:
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= Inverse probability weighting: To correct, weight each unit
by the reciprocal of the probability of being included in the
sample: Y/m;.

= Horvitz-Thompson estimator is unbiased:
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= Reweights the sample to be representative of the population.



Back to causal effects

= With a completely randomized experiment, we can just use
the simple differences in means:

E[Y;D; = 1] - E[Y;|D; = 0] = E[Y;(1)] - E[Y;(0)]
= With no unmeasured confounders, we need to adjust for X;.

E[Y;(d)] = E[E[Y;(d)IX]]
> E[Yi(d)|X; = x]P(X; = x)

XeZ

= ) ElY,@ID; = d,X; = x]P(X; = x)
xXeZ

= ) ElYiD; =d,X; = x]P(X; = )
xeZ

= With subclassification, we binned X;, calclulated within-bin
differences and then averaged across the bins, just like this.



Searching for the weights

E[Y;(d)] = Y} E[Y/{D; = d,X; = x]P(X; = x)
xeZ’

= Compare this to the the within treatment group average:

E[Y/D; =d] = Y, E[Y{D; =d, X; = x]P(X; = x|D; = d)
xeZ

P(D: =dX: = x)P(X: =
= Z ]E[YllDz = d’Xi = x] ( g dl L x) ( i x)
xeZ P(D; = d)

= How should we reweight the data from an observational study?

= |f we were to reweight the data by W; = 1/IP(D; = d|X;), then
we would break the relationship between D; and X;.



Weights

Single binary covariate. Define the weight function:

1

W) = T ety

To get the weight for i, plug in observed treatment, covariate:
W; = w(D;, X;)
If (Di/ Xz) = (11 1)1

1 1
T e(l) P, =1X;=1)

If (DiIXi) = (0,0)

1 1
W: = =
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Example

| Xi=0 X;=1
D;=0| 4 3
Di = 1 4 9
O ]P(Dl = 1|Xl = 0) =05
« PD;=1X;=1)=0.75
= Weights:
| X;=0 X;=1
D;=0] 1/0.5 1/0.25
D;=1|1/05 1/0.75
= Weighted data (the pseudo-population):
| X;=0 X;=1
D;=0 8 12
D;=1 8 12

= Py(D; =1]X; =x) =0.5 for all x



Properties of reweighted data

= Let's calculate the weighted probability that D; = 1.

Pw[D; =1|X; = «]
_w(l,x)-P[D; = 11X; = x]

a)*
1 — —
_ P PP = UXi =
w*
1
-

= @* is a normalization factor to make sure probabilities sum to

1.
= Important point: Py(D; =1|X;=1)=Pyw(D; =11X;=0) = wi
= ~» D; independent of X; in the reweighted data.



Overall mean

What is the weighted mean for the treated group?

= Use a similar approach to survey weights, where D; is the
“sampling indicator”:

o 1Y
Ylw = N ZDZ'WI'YI'
=1

= W,Y; is the weighted outcome, D; is there to select out the
treated observations.

= \We want to see what the conditional weighted mean identifies:
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Proving unbiasedness

= Weighted mean of treated units is mean of potential outcome:

_r [ D;Y;(1) C—
= | e(x,) onsistency
=JE|E [ DiYi (1)| (Iterated Expectations)
| | e(X))
_ _[EIDAXIELY;(D)IX)]
=F _ o) ] (n.u.c.)
= —e(Xi)E[Yi(l)lxi]] (Propensity Score Definition)
e(X;)

= E[Y;(1)] (Iterated Expectations)



Putting it all together

= The same logic would give us the mean potential outcomes

under control: A-D)Y
U Z EIYA0
= These two facts provide an estimator for the average
treatment effect:
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= The above two results give us that this esimator is unbiased.

= This is sometimes called the Horvitz-Thompson estimator
due to the close connection to the survey sampling estimator.



Estimation of the propensity score

1 DG ({l= Dl-)Yl-)

N
=X ; eX)  1-eX)

= Need to know or estimate the propensity score, e(X;). How do

we do that?
= Discrete covariates estimate the within-strata propensity
scores N
~ xd
ex) = —
® =3

> Non-parametric estimate of the propensity score in each
stratum of the data.

= Continuous covariates ~~ Logistic regression of D; on X;.



Estimated versus known pscores

ht.est <- function(y, d, w) {
n <- length(y)
(1/n) * sum(Cy * d * w) = (y * (1 = d) * w))
3
n <- 200
X <= rbinom(n, size = 1, prob = 0.5)
dprobs <- 0.5 * x + 0.4 x (1 - x)
d <- rbinom(n, size 1, prob = dprobs)
y<-5xd-10 % x rnorm(n, sd = 5)

true.w <- ifelse(d == 1, 1/dprobs, 1/(1 - dprobs))
pprobs <- predict(glm(d ~ x))

est.w <- ifelse(d == 1, 1/pprobs, 1/(1 - pprobs))
ht.est(y, d, est.w)

## [1] 5.1
ht.est(y, d, true.w)

## [1] 5.5




Sampling distribution of the HT
estimators

sims <- 10000

true.holder <- rep(NA, sims)

est.holder <- rep(NA, sims)

for (i in 1:sims) {
X <- rbinom(n, size = 1, prob = 0.5)
dprobs <- 0.5 *x x + 0.4 * (1 - x)
d <- rbinom(n, size = 1, prob = dprobs)

y <-5=xd-10 * x + rnorm(n, sd = 5)

true.w <- ifelse(d == 1, 1/dprobs, 1/(1 - dprobs))
pprobs <- predict(glm(d ~ x))

est.w <- ifelse(d == 1, 1/pprobs, 1/(1 - pprobs))
est.holder[i] <- ht.est(y, d, est.w)
true.holder[i] <- ht.est(y, d, true.w)




Sampling distribution of the HT
estimators

Estimated Pscore

True Pscore

var(est.holder)
## [1] 0.52

var(true.holder)

#[1]11.2



Why use estimated pscores?

= Why does the estimated propensity score do better than the
true propensity score?

= Removing chance variations using 2(X;) adjusts for any
small imbalances that arise because of a finite sample.

= The true p-score only adjusts for the expected differences
between samples.



Distribution of X in the weighed data

ht.est(x, d, est.w)

## [1] 8.1e-16
ht.est(x, d, true.w)

# [1] -0.2



Positivity violations

Remember the positivity assumption:
0< p(Dl = 1|XZ) <1

= What happens to the weights if this is violated? Then,
é(x) =0 or é(x) =1 and

= Structural ~~ population probability is 0.
= Random ~- sample probability is 0.
> Need to “borrow" information from other values of X; to

estimate e(X;)
» ~~ modeling via logit, etc.



Automated approaches

= Challenge: specifying the propensity score model.
o(X;) = logit™ (X/)

= What terms should we include?

= Big problem for weights: small changes to PS model lead to
big changes in the weights.

= Entropy balancing (Hainmueller 2012):

» Choose weights for each observation that maximize the
balance between treatment and control groups.

= Covariate Balancing Propensity Scores (Imai and Ratkovic):

» Estimate the propensity score subject to the additional
constraint of maximizing balance.



Boostrapping to get the SEs

= How to get the standard error for 77
= Variance estimators are messy ~» use the bootstrap!

1. Draw a sample of the data with replacement, call this, Sj,.

2. Estimate the propensity scores in this sample, &, and create
weights, W,,.

3. Use the weights to get an estimate of the average treatment
effect, 7, in the sample S,,.

4. Repeat.

= The distribution of the estimates, 7;, will give us the
bootstrapped standard errors and confidence intervals.



Bootstrap in R

mydata <- data.frame(y, d, x)
boots <- 1000
b.holder <- rep(NA)
for (i in 1:boots) {
S.b <- sample(1:n, size = n, replace = TRUE)

data.b <- mydata[S.b, ]

pprobs <- predict(glm(d ~ x, data = data.b))

est.w <- ifelse(data.b$d == 1, 1/pprobs, 1/(1 -
pprobs))

b.holder[i] <- ht.est(data.b$y, data.b$d, est.w)

= Compare bootstrapped variance to true sampling variance:

var(b.holder)

## [1] 0.51
var(est.holder)

## [1] 0.52



Reducing weight variation

= ¢(X;) close to 0 or 1 lead to very large weights, high standard
errors.
= Potential solutions:

1. Trimming/Windsorizing the weights
» Pick some value w’ and create trimmed weights which are:

_ Wi ifW,»<w’
w it W, >w

2. Stabilized weights

» We can actually put any other function of the treatment vector
in the numerator, which can reduce the variation in the
weights.

» We call these stabilized weights:

P[D; = 1]%(1 - P[D; = 1))
e(x)(1 - e(x))*

sw(d, x) =



Stablized weights

= With a binary treatment, we can implement the stabilized
weight by normalizing the weights:

SW; = ;v f
2 Wi
= This leads to the following estimator:
1 N N
TipTw =m ; W:D;Y; - m z; Wi(1-DyY;
1 N D;Y;

"V, Dfe(x) A o)

1 & (1-Dy)Y;
SN, (- D)1 -2(X)) & 1-#X)

= These are the means that the weighted.mean() function in R
calculates. It normalizes the weights before calculating the
mean.



Stablized weights

n <- 1000
sims <- 10000
est2.holder <- rep(NA, sims)
sw.holder <- rep(NA, sims)
for (i in 1:sims) {
X <= rnorm(n)
dprobs <- boot::inv.logit(-1 + x)
d <- rbinom(n, size = 1, prob = dprobs)
y<-5x*xd-10 * x + rnorm(n, sd = 5)

pprobs <- glm(d ~ x, family = binomial())$fitted

est.w <- ifelse(d == 1, 1/pprobs, 1/(1 - pprobs))

est2.holder[i] <- ht.est(y, d, est.w)

sw.holder[i] <- weighted.mean(y[d == 1], est.w[d ==
11) - weighted.mean(y[d == 0], est.w[d == 0])




Stabilized weights

IPTW (stablized)

Horvitz-Thompson

var(est2.holder)
## [1] 0.78

var(sw.holder)

# [1] 0.59



Distribution of the weights

Stablized

tail(est.wlorder(est.w)])

## [1]1 12 13 13 14 14 33

tail(est.swlorder(est.sw)])

## [1] 3.9 3.9 4.0 4.1 4.3 9.9



2/ Post-treatment
bias



Post-treatment bias

= Rule of matching/weighting/regression: don’t condition on
posttreatment variables.
= Usual intuition:

> You might “control away” part of the effect of D; on Y; that
“flows through” Z; where Z; is the posttreatment variable.
» Can be misleading.

= Two big problems with conditioning on these:

» Changes the quantity of interest (see above).
» Induces selection bias.

= We'll go through Rosenbaum (1984) logic.



Setup

= Posttreatment variable Z;
= Has potential outcomes because it is affected by treatment:

(Zi(1), Z;(0)).
= Consistency for the posttreatment variable:

Z; = DiZ;(1) + (1 - D)Z(0)

= Example:

» Effect of campaign negativity (D;) fixing polling later in the
campaign (Z;)



Assumptions and estimators

= Assume no unmeasured confounders:
(Y:1), Yi(0)) 1L DiiX;
= Usually estimate the CATE:
©(x) = E[YID; = 1, X; = x] - E[Y}ID; = 0, X; = x]

= Average to get the ATE: 7 = E[7(X})].



Condition on a posttreatment variable

= What happens when we control for the post-treatment
variable:

A(X,Z) = E[YZID, = 1, Zi = Z,X,‘ = x] - E[Y1|D1 = O,Z,‘ =2z, Xi = X]
= E[Yl(l)lDl = 1, Zi = Z,Xi = x] - E[Y,(0)|D1 = O,Zi =2z Xi = x]
= E[Y;(DID; = 1,Z;(1) = z, X; = x] - E[Y;(0)ID; = 0,Z;(0) = z, X; = x]

= Average these over the distribution of (X, Z): A = E[A(X, Z)].

= Compare this estimator A to the average treatment effect 7.



Controlled direct effect

= Define the net treatment difference v(x, z):
v(x,z) = E[Y;(1)IZ;(1) = z, X; = x] - E[Y{(0)IZ;(0) = 2, X; = x]
= Similar to the controlled direct effect, or the effect of D;
fixing Z;(1) = Z;(0) = z, removing the arrow from D, to Z;:
4

\

D—Y

= Intuitively (if not precisely): if v(x,z) =0 and 7 > 0, the effect
of D; on Y; flows entirely through Z;.
= Again, we'll take the average over (X;,Z;): v = E[v(X;, Z;)].



Posttreatment bias decomposition

A-t= (A-v) + -1

S—_—= ~——
bias for NTD change in Qol

= The bias of A is two terms.

= (A —v) measures our inability to estimate the net treatment
difference.

= Why? Maybe Z; is a collider. If we condition on Z;, it opens a
backdoor path between D; and Y;:

u—=z

vl

D—Y

= |n this case, conditioning on Z opens the backdoor path from
D« U — Z <« Y. Thus, (A-v) represents the bias due to
unmeasured confounding between D; and Z;.



Posttreatment bias

A-t= (A-v) + @W¥-1)

S—_— S—_—
bias for NTD change in Qol

= (v—1): difference between the net treatment difference and
the average treatment effect.

= The change in the quantity of interest.

= Might call this the effect of intervening on Z;.

= Under some conditions, this difference can be thought of as
the indirect effect of D; on Y; through Z;, but not always.

» ~~ Causal mediation/mechanisms
» Very tricky assumptions, we'll talk about later.



Conditions that eliminate
post-treatment bias

= When will there be no posttreatment bias?
= Under two assumptions:

1. No unmeasured confounders for post-treatment variable:
(Y3(0), Z(0), Yi(1), Z;(1)) 1L DilX;

2. No effect of treatment on the post-treatment variable:
Z;(1) = Z;(0) = Z; for all units.



No unmeasured confounders, I

(Yi(0), Z(0), Y:(1), Zi(1)) LL DiIX;

= This extends no unmeasured confounders to the
post-treatment variable.
= Most likely satisfied under randomization.
= Implies that A =v. Why?
> No unblocked backdoor paths from D; to Z;

» ~~ Z; cannot be a collider on a back-door path.
» No collider bias for NTD

= Still could change the quantity of interest.

D —

< «— N



No effect on Z

= No effect of treatment on the post-treatment variable:
Zl(l) = ZI(O) = Zi fOI' all units.
= Under this condition, we have NTD = ATE.

» The effect of D; cannot go through Z; since it doesn't affect Z;:

v(x,z) = E[Y(1)|Z(1) = z, X = x] - E[Y(0)|Z(0) = z, X = x]
=E[Y(1)-Y(0)Z=2X =x].

= So that when we take the average over (X;, Z;), we get v = 1.
In this case the above DAGs would be:

T T

D—Y D—Y

= Essentially assumes Z; is pretreatment.



Posttreatment bias overview

= Found two assumptions under which condition on Z; doesn't
matter.
= But, these two assumptions buy us nothing:

» Requires no unmeasured confounders ~+ could have estimated
the ATE in the usual way.



Simulation

## Post-treatment bias simulation

set.seed(14627)

d rnorm(500, 50, 15)

u rnorm(500, 50, 15)

z rnorm(500, 0.5 x d + 0.5 * u, 5)
y rnorm(500, 75 + -0.5 x u, 5)

sub <-z > 60 & z < 70



Posttreatment bias example
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Posttreatment bias example
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