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Where are we? Where are we going?

= Discussed randomized experiments, started talking about
observational data.

= Last week: no unmeasured confounders and how it identifies
the ATE.

= This week: one way to estimate causal effects under no
unmeasured confounders, matching.

= Coming up: other ways of estimating causal effects:
weighting, regression.



1/ |dentification for
Matching



Why match?

= No unmeasured confounding holds, but we need to adjust for
Xi
= Common solution: write a parametric model for E[Y;(d)|X;]
» For example, could assume it is linear: E[Y;(d)X;] = X]p
» Regression, MLE, Bayes, etc.
= But this model might be wrong ~~ wrong causal estimates.
= Matching has two benefits:

1. Can simplify the analysis of causal effects
2. Reduces dependence of estimates on parametric models.



Model dependence

= Use parametric models M;, ..., M to estimate the ATE: %]-
> include X; , X?, log(X;), X; X Z;, X}, etc

= Model dependence: large variation in the estimates, 7;

= Why does this occur?

» Parametric models extrapolate to regions with only treated or
only control.
» Modeling assumptions will greatly affect these extrapolations.



Model dependence example
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Caution

= No unmeasured confounders identifies the causal effect.

= Matching doesn't make this more plausible

= ~» Matching doesn't justify a causal effect.

= Matching just allows for relatively nonparametric ways of

estimating the causal effect.

= Sekhon:
Without an experiment, natural experiment, a
discontinuity, or some other strong design, no
amount of econometric or statistical modeling can
make the move from correlation to causation
persuasive.



Assumptions

1. No unmeasured confounders:
D; 1L (Y(0), Yi(1)IX;
2. Positivity /overlap:

0<P(D;=1X;=x) <1



Exact matching

= Let X; take on a finite number of values, x € 2.

= LetI; ={1,2,..,N;} be the set of treated units.

= Exact matching. For each treated unit, i € I;:
> Find the set of unmatched control units j such that X; = X;
> Randomly select one of these control units to be the match,

indicated j(i).

= Let I, = {j(1),...,j(N};)} be the set of matched controls.

= Last, discard all unmatched control units.

= The distribution of X; will be exactly the same for treated

and matched control:

P(X; =x|D; = 1) = P(X; = x|D; =0, 1)



Identification of the ATT

= Let's show that the ATT is identified if the data is exactly
matched:
Tarr = E[Y;(1)ID; = 1] - E[Y;(0)ID; = 1]

= E[Vi|D; = 1] -E[Y;(0)ID; = 1]

—
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= E[Y|D; = 1]- )} E[Y:(0)IX; = x,D; = 1] Pr(X;|D; = 1)

xeZ’

iterated expectations

= E[Y{D; = 1] - Y} E[Y{(0)IX; = x, D; = 0] Pr(X,|D; = 1)

xXeZ ——
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Weakening the identification
assumptions

= No unmeasured confounders, consistency, and exact matches
~ identifying the ATT.

= Can weaken no unmeasured confounders to conditional
mean independence (CMI):

E[Y;(0)IX;, D; = 1] = E[Y;(0)IX;, D; = 0]

= Two nice features of CMI:

1. Only have to make assumptions about Y;(0) not Y;(1)
2. Only places restrictions on the means, not other parts of the
distribution (variance, skew, kurtosis, etc)



Analyzing exactly matched data

= How do we analyze the exactly matched data?
= Dead simple difference in means:

1 Y 1
T =__ V= — Y
Tim N, ; i N, ]§ j

= Notice that we matched 1 treated to 1 control exactly, so we
have:

L1
v ;(Yi - Yjw)

= ~~ average of the within matched-pair differences.



Variance with exact matches

= Notice that with 1:1 treated/control matching, similar to a
matched-pair experiment.
= Variance estimators are a little different for these.
= Variance estimator:
N,
—~ 1 & 2
V@) = 5 3 (Yi- Y - 7T0)

ti=1

= In-sample variance of the within-pair differences.



Beyond exact matching

= With high-dimensional X;, not feasible to exact match.

= Let S be a matching solution: a subset of the data produced
by the matching procedure: (I, 1,).

= Suppose that this procedure produces balance:

D; 1l X;|S

= This implies that no unmeasured confounders holds in that
subset:
(Y1(0), Y,(1)) L DiIS

= Balance is checkable ~» are D; and X; related in the matched
data?



2/ Matching details



The matching procedure

Choose a number of matches

Choose a distance metric

Find matches (drop non-matches)

Check balance

Repeat (1)-(4) until balance is acceptable

Calculate the effect of the treatment on the outcome in the
matched dataset.

o @l > @ =



More than 1 control match

= What if we have enough controls to have M matched controls
per treated?
» P(X; =x|D; =1) = P(X; = x|D; = 0,1,) because M is constant
across treated units.
= Now, Jy(7) is a set of M control matches. Use these to
“impute” missing potential outcome.

= For i eI, define:
= 1
Y 0=— > Y
€M)

= New estimator for the effect:
. 1 =
T = 5 (Y5 = Yil0))
ti=1

= Under no unmeasured confounding, Yl-(O) is a good predictor
of the true potential outcome under control, Y;.



Number of matches

= How many control matches should we include?

» Small M ~» small sample sizes
» Large M ~~ worse matches (each additional match is further
away).

= |f M varies by treated unit, need to weight observations to
ensure balance.



With or without replacement

= Matching with replacement: a single control unit can be
matched to multiple treated units
= Benefits:

> Better matches!
» Order of matching does not matter.

= Drawbacks:

» Inference is more complicated.

» ~~ need to account for multiple appearances with weights.

» Potentially higher uncertainty (using the same data multiple
times = relying on less data).



3/ Distance metrics



Defining closeness

= We want to find control observations that are similar to the
treated unit on X;.

= How do we define distance/similarity on X; if it is high
dimensional?

= We need a distance metric which maps two covariates
vectors into a single number.

» Lower values ~~ more similar values of X;.
» Choice of distance metric will lead to different matches.



Exact distance metric

= Exact: only match units to other units that have the same
exact values of X;.

D. = 0 IfXIIX]
T e i X # X



Propensity scores, redux

= Propensity scores: ¢(X;) = P(D; = 1|X;)
= Remember that we only need to condition on the true PS:

(Yi(0), V(1)) LL Djle(X;)

= ~~ sufficient to balance on the true propensity score.
= Rubin et al. have shown that PS matching has good
properties if covariates are roughly normal.

» Though, see King and Nielsen working paper on PS matching.



Propensity score distances

= Intuitive to use the raw absolute differences in the PS:
Dj; = le(X;) — e(X;)l
= Better to use the linear propensity score, logit(e(X;)) = X;p:
D;; = |logit(e(X;)) — logit(e(X)))I

= Accounts for non-linearity in the substantive differences in the
PS:

» 0.05 — 0.10 is more important than 0.50 — 0.55.



True vs. estimated propensity scores

= Balancing properties of the PS depend on knowing the true
PS function, e(x).

= In observational studies we never know the true PS ~~
estimate it &(x).

= s balancing on &(X;) sufficient? No ideal!

» Have to check if X; is actually balanced.
» Somewhat deflates the benefits of PS matching/balancing.

= ~~ “propensity score tautology”



Euclidean distance

= The Euclidean distance metric just uses the sum of the
normalized distances for each covariate.

» "“Closeness” is standardized across covariates.
= Suppose that X; = (X, ..., Xjx)’, so that there are K
covariates.

= Then the Euclidean distance metric is:




Mahalanobis distance

= Mahalanobis distance: Euclidean distance adjusted for
covariance in the data.

= Intuition: if X; and Xj. are two covariates that are highly
correlated, then their contribution to the distances should be
lower.

» Easy to get close on correlated covariates ~ downweight.
» Harder to get close on uncorrelated covariates ~~ upweight.

= Metric:

Dj = /(X - X)yE1(X; - X))

= Y is the estimated variance-covariance matrix of the
observations:
1

N : (X; - X)X - X)"

M=

Y=

Il
—_



Complications

= Combining distance metrics:
» Exact on race/gender, Mahalanobis on the rest.
= Some matches are too far on the distance metric.

» Dropping those matches (treated and control) improves
balance.
» Dropping treated units changes the quantity of interest.

= Implementation: a caliper, c, is the maximum distance we
would accept:

. \/(Xi “X)TAX - X)) i |logit(e(X))) - logit(e(X))| < c
T oo if Jlogit(e(X,)) — Logit(e(X))| > c



4/ Fstimands ano
Matching Methods



Estimands

= Matching easiest to justify for the ATT.

» Dropping control units doesn't affect this identification.

= Can also identify the ATC by finding matched treated units
for the controls.
= Combine the two to get the ATE:

T = TarrP(D; = 1) + To7cP(D; = 0)

= Estimated:



Moving the goalposts

= Common support: finding the subspace of X; where there is
overlap between the treated and control groups.

» Have to extrapolate outside is region.
» Theoretical: effect of voting for those under 18
(P(D; = 1|X; < 18) = 0).
» Empirical: no/extremely few treated units in a sea of controls.
» Solution: restrict analysis to common support (dropping
treated and controls).

= Moving the goalposts: dropping treated units.

» We move away from being able to identify the ATT.

» Now it's the ATT in the matched subsample (sometimes called
the feasible ATT).

» Good to be clear about this.



Matching methods

= Now that we have distances between all units, we just need to
match!
= For a particular unit, easy:

j(i) = argmin D;;
J€le

> J. are the available controls for matching.

= This is nearest neighbor: “Find the control unit with the
smallest distance metric.”

= Do the same for all treated units.

= What about ties?

> Randomly choose between them.



Order effects

= With NN matching, the order matters.

» Treated: X; =0.5 and X, = 0.7
» Control: X3 =0.8 and X, =0.15
» Match 1 first: 1< 3 and then 2 « 4, EDij =0.85
> Match 2 first: 2~ 3 and then 1 « 4, ¥ D;; = 0.45
> NN is “greedy.”
= Optimal matching: Finds the matching solution that
minimizes overall distance.
> Find j(1), ..., j(N;) to minimize: 3" Dy
» Tends to find the same set of controls, just matched to

different treated groups.
» Useful for finding matched pairs.



GenMatch

= We could extend Mahalanobis distance to weight covariates by
their importance to producing balance.

» Bad balance after matching ~~ tweak these weights and
re-match.
» Can we automate this?

= GenMatch is a genetic algorithm that attempts to find the
Mahalanobis weights that produce the best balance.

» Randomly a population of different starting vectors (weight
vectors).

» Evaluate the “fitness" of each vector (the balance it produces).

» Randomly create new population focused on the vectors with
best balance.

> Mimics natural selection.



CEM

= Coarsened Exact Matching is akin to stratification.

» Stratify/coarsen all continuous covariates into bins: X}

» X7 now has a discrete number of possible values.

» Exact match on X}: keep data in strata X; = x* if there are at
least 1 treated and 1 control with X7 = x*, drop others.

» Use uncoarsened data, X;, in the analysis stage.

= Example:

» Coarsen years of education into: (less than H.S., H.S. degree,
some college, B.A./B.S., Advanced degree)

= Benefits:

> Allows you to control the amount of imbalance up front
» Coarser ~» more imbalanace, finer ~ less imbalance



Assessing balance

= All matching methods seek to minimize balance:
P(X; =xD; =1,5) =P(X; = x|D; = 0, S)

= Choice of balance metric will determine which matching
method does better.

» If you use Mahalanobis distance as the balance metric, then
matching on the Mahalanobis score will do well because that's
what it's designed to do.

= Options:

» Differences-in-means/medians, standardized.

» Quantile-quantile plots/KS statistics for comparing the entire
distribution of X;.

» L;: multivariate histogram.



5/ Post-matching
Analysis



What to do with matched data?

= You matched and pruned the data of non-matches, now what?
= Exact matching: simple difference in means.
= Inexact matching: there will be matching discrepancy:

Wi = Xi = Xj)

= |f balance is good then W; should be quite small, but could
still be large and produce bias.
= Matching discrepancy will grow with the dimension of X;



Bias of inexact matching

= Let u.(x) = E[Y;(0)|X; = x] be how the mean of Y;(0) changes
as a function of X;.

= Take a single matched pair produced by matching:
Ti = Yi = Yo
= We hope this estimates 7(X;), but there is actually bias:

E[7,iID; = 1, X;, Xj)] = ©(X;) + (1c(Xi) = 1c(Xiy))

unit-level bias

= |f X; has a big effect on the mean of Y;(0) then this bias could
be big!



Bias-corrected estimators

B; = pe(Xi) — pe(Xjii))

= How do we get rid of this bias?
» Estimate it, B;, and subtract it off, (Y; -Yiw) - B;

= Specify a parametric model for u.(x) = @, + x’B. and estimate
B. from the control data:

B, = Be(Xi) ~ Be(Xjp) = (Xi ~ X)) Be

= Specification of u.(x) will matter less after matching.
= Create bias-corrected/adjusted imputations for Y;(0):

Y,(0) = Yy + (X; - Xip)' e



Bias-corrected inference

Yi(0) = Y + (X — Xj))'Be

= Plug this into the same estimator:

Ni

;Em,bc = 1\1_] E (Yi - YI(O))

ti=1

= Variance estimation for this quantity is easiest without
replacement.

= Simply take the variance of the within-match differences:

S i A — 2
VIzal = 1 23 (Vi = Yi0) ~ Tunse)

ti=1



Fully pooled model

= What if we simply run our original analysis model on the
pooled, matching data:

Y ~ a4
Yi—(Xp+Tp'Di+Xiﬁp+Vi

= Y, is the 2 x N, matched treated and control units stacked.
= 7, from OLS on this model is a bias-corrected estimate where
we assume that:
[Jc(x) = yt(x)

= Still corrects for some of the residual bias left over from the
matching.

= SEs from these models might make additional assumptions
(homoskedasticity, etc).



6/ \Wrap-up



Conclusion

= Matching is a technique to reduce model dependence and
avoid parametric modeling assumptions when no unmeasured
confounders holds.

= Lots of different ways to match, each has advantages and
disadvantages.

= Pay careful attention to the quantity of interest when you
drop units.

= Next week:

» Weighting methods and posttreatment bias.
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