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Where are we? Where are we going?

• Discussed randomized experiments, started talking about
observational data.

• Last week: no unmeasured confounders and how it identifies
the ATE.

• This week: one way to estimate causal effects under no
unmeasured confounders, matching.

• Coming up: other ways of estimating causal effects:
weighting, regression.



1/ Identification for
Matching



Why match?

• No unmeasured confounding holds, but we need to adjust for
𝑋𝑖

• Common solution: write a parametric model for 𝔼[𝑌𝑖(𝑑)|𝑋𝑖]
▶ For example, could assume it is linear: 𝔼[𝑌𝑖(𝑑)|𝑋𝑖] = 𝑋′

𝑖 𝛽
▶ Regression, MLE, Bayes, etc.

• But this model might be wrong ⇝ wrong causal estimates.
• Matching has two benefits:

1. Can simplify the analysis of causal effects
2. Reduces dependence of estimates on parametric models.



Model dependence

• Use parametric models 𝑀􏷠, … ,𝑀𝐽 to estimate the ATE: 􏾦𝜏𝑗
▶ include 𝑋𝑖 , 𝑋􏷡

𝑖 , log(𝑋𝑖), 𝑋𝑖 × 𝑍𝑖, 𝑋􏷣
𝑖 , etc

• Model dependence: large variation in the estimates, 􏾦𝜏𝑗
• Why does this occur?

▶ Parametric models extrapolate to regions with only treated or
only control.

▶ Modeling assumptions will greatly affect these extrapolations.



Model dependence example



Caution

• No unmeasured confounders identifies the causal effect.
• Matching doesn’t make this more plausible
• ⇝ Matching doesn’t justify a causal effect.
• Matching just allows for relatively nonparametric ways of

estimating the causal effect.
• Sekhon:

Without an experiment, natural experiment, a
discontinuity, or some other strong design, no
amount of econometric or statistical modeling can
make the move from correlation to causation
persuasive.



Assumptions

1. No unmeasured confounders:

𝐷𝑖 ⟂⟂ 􏿴𝑌𝑖(0), 𝑌𝑖(1)􏿷|𝑋𝑖

2. Positivity/overlap:

0 < ℙ(𝐷𝑖 = 1|𝑋𝑖 = 𝑥) < 1



Exact matching

• Let 𝑋𝑖 take on a finite number of values, 𝑥 ∈ 𝒳 .
• Let 𝕀𝑡 = {1, 2, … ,𝑁𝑡} be the set of treated units.
• Exact matching. For each treated unit, 𝑖 ∈ 𝕀𝑡:

▶ Find the set of unmatched control units 𝑗 such that 𝑋𝑖 = 𝑋𝑗
▶ Randomly select one of these control units to be the match,

indicated 𝑗(𝑖).
• Let 𝕀𝑐 = {𝑗(1), … , 𝑗(𝑁𝑡)} be the set of matched controls.
• Last, discard all unmatched control units.
• The distribution of 𝑋𝑖 will be exactly the same for treated

and matched control:

ℙ(𝑋𝑖 = 𝑥|𝐷𝑖 = 1) = ℙ(𝑋𝑖 = 𝑥|𝐷𝑖 = 0, 𝕀𝑐)



Identification of the ATT
• Let’s show that the ATT is identified if the data is exactly

matched:
𝜏ATT = 𝐸[𝑌𝑖(1)|𝐷𝑖 = 1] − 𝐸[𝑌𝑖(0)|𝐷𝑖 = 1]

= 𝐸[𝑌𝑖|𝐷𝑖 = 1]􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏿍
consistency

−𝐸[𝑌𝑖(0)|𝐷𝑖 = 1]

= 𝐸[𝑌𝑖|𝐷𝑖 = 1] − 􏾜
𝑥∈𝒳

𝐸[𝑌𝑖(0)|𝑋𝑖 = 𝑥,𝐷𝑖 = 1] Pr(𝑋𝑖|𝐷𝑖 = 1)
􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿍

iterated expectations

= 𝐸[𝑌𝑖|𝐷𝑖 = 1] − 􏾜
𝑥∈𝒳

𝐸[𝑌𝑖(0)|𝑋𝑖 = 𝑥, 𝐷𝑖 = 0􏿋􏻰􏻰􏿌􏻰􏻰􏿍
n.u.c.

] Pr(𝑋𝑖|𝐷𝑖 = 1)

= 𝐸[𝑌𝑖|𝐷𝑖 = 1] − 􏾜
𝑥∈𝒳

𝔼[𝑌𝑖|𝑋𝑖􏿋􏻰􏻰􏿌􏻰􏻰􏿍
consis.

= 𝑥,𝐷𝑖 = 0] Pr(𝑋𝑖|𝐷𝑖 = 1)

= 𝐸[𝑌𝑖|𝐷𝑖 = 1] − 􏾜
𝑥∈𝒳

𝐸[𝑌𝑖|𝑋𝑖 = 𝑥,𝐷𝑖 = 0] Pr(𝑋𝑖|𝐷𝑖 = 0, 𝕀𝑐)􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿍
exact matches

= 𝐸[𝑌𝑖|𝐷𝑖 = 1] − 𝐸[𝑌𝑖|𝐷𝑖 = 0, 𝕀𝑐]􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿍
iterated exp.



Weakening the identification
assumptions

• No unmeasured confounders, consistency, and exact matches
⇝ identifying the ATT.

• Can weaken no unmeasured confounders to conditional
mean independence (CMI):

𝐸[𝑌𝑖(0)|𝑋𝑖, 𝐷𝑖 = 1] = 𝐸[𝑌𝑖(0)|𝑋𝑖, 𝐷𝑖 = 0]

• Two nice features of CMI:
1. Only have to make assumptions about 𝑌𝑖(0) not 𝑌𝑖(1)
2. Only places restrictions on the means, not other parts of the

distribution (variance, skew, kurtosis, etc)



Analyzing exactly matched data

• How do we analyze the exactly matched data?
• Dead simple difference in means:

􏾦𝜏𝑚 =
1
𝑁𝑡

𝑁𝑡
􏾜
𝑖=􏷠
𝑌𝑖 −

1
𝑁𝑐

􏾜
𝑗∈𝕀𝑐

𝑌𝑗

• Notice that we matched 1 treated to 1 control exactly, so we
have:

􏾦𝜏𝑚 =
1
𝑁𝑡

𝑁𝑡
􏾜
𝑖=􏷠
(𝑌𝑖 − 𝑌𝑗(𝑖))

• ⇝ average of the within matched-pair differences.



Variance with exact matches

• Notice that with 1:1 treated/control matching, similar to a
matched-pair experiment.

• Variance estimators are a little different for these.
• Variance estimator:

􏾧𝕍(􏾦𝜏𝑚) =
1
𝑁𝑡

𝑁𝑡
􏾜
𝑖=􏷠
􏿴𝑌𝑖 − 𝑌𝑗(𝑖) − 􏾦𝜏𝑚􏿷

􏷡

• In-sample variance of the within-pair differences.



Beyond exact matching

• With high-dimensional 𝑋𝑖, not feasible to exact match.
• Let 𝑆 be a matching solution: a subset of the data produced

by the matching procedure: (𝕀𝑡, 𝕀𝑐).
• Suppose that this procedure produces balance:

𝐷𝑖 ⟂⟂ 𝑋𝑖|𝑆

• This implies that no unmeasured confounders holds in that
subset:

􏿴𝑌𝑖(0), 𝑌𝑖(1)􏿷 ⟂⟂ 𝐷𝑖|𝑆

• Balance is checkable ⇝ are 𝐷𝑖 and 𝑋𝑖 related in the matched
data?



2/ Matching details



The matching procedure

1. Choose a number of matches
2. Choose a distance metric
3. Find matches (drop non-matches)
4. Check balance
5. Repeat (1)-(4) until balance is acceptable
6. Calculate the effect of the treatment on the outcome in the

matched dataset.



More than 1 control match

• What if we have enough controls to have 𝑀 matched controls
per treated?

▶ ℙ(𝑋𝑖 = 𝑥|𝐷𝑖 = 1) = ℙ(𝑋𝑖 = 𝑥|𝐷𝑖 = 0, 𝕀𝑐) because 𝑀 is constant
across treated units.

• Now, 𝐽𝑀(𝑖) is a set of 𝑀 control matches. Use these to
“impute” missing potential outcome.

• For 𝑖 ∈ 𝕀𝑡 define:
􏾧𝑌𝑖(0) =

1
𝑀

􏾜
𝑗∈𝐽𝑀(𝑖)

𝑌𝑗

• New estimator for the effect:

􏾦𝜏𝑚 =
1
𝑁𝑡

𝑁𝑡
􏾜
𝑖=􏷠
(𝑌𝑖 − 􏾧𝑌𝑖(0))

• Under no unmeasured confounding, 􏾧𝑌𝑖(0) is a good predictor
of the true potential outcome under control, 𝑌𝑖.



Number of matches

• How many control matches should we include?
▶ Small 𝑀⇝ small sample sizes
▶ Large 𝑀⇝ worse matches (each additional match is further

away).
• If 𝑀 varies by treated unit, need to weight observations to

ensure balance.



With or without replacement

• Matching with replacement: a single control unit can be
matched to multiple treated units

• Benefits:
▶ Better matches!
▶ Order of matching does not matter.

• Drawbacks:
▶ Inference is more complicated.
▶ ⇝ need to account for multiple appearances with weights.
▶ Potentially higher uncertainty (using the same data multiple

times = relying on less data).



3/ Distance metrics



Defining closeness

• We want to find control observations that are similar to the
treated unit on 𝑋𝑖.

• How do we define distance/similarity on 𝑋𝑖 if it is high
dimensional?

• We need a distance metric which maps two covariates
vectors into a single number.

▶ Lower values ⇝ more similar values of 𝑋𝑖.
▶ Choice of distance metric will lead to different matches.



Exact distance metric

• Exact: only match units to other units that have the same
exact values of 𝑋𝑖.

𝐷𝑖𝑗 =

⎧⎪⎪⎨
⎪⎪⎩
0 if 𝑋𝑖 = 𝑋𝑗
∞ if 𝑋𝑖 ≠ 𝑋𝑗



Propensity scores, redux

• Propensity scores: 𝑒(𝑋𝑖) = ℙ(𝐷𝑖 = 1|𝑋𝑖)
• Remember that we only need to condition on the true PS:

􏿴𝑌𝑖(0), 𝑌𝑖(1)􏿷 ⟂⟂ 𝐷𝑖|𝑒(𝑋𝑖)

• ⇝ sufficient to balance on the true propensity score.
• Rubin et al. have shown that PS matching has good

properties if covariates are roughly normal.
▶ Though, see King and Nielsen working paper on PS matching.



Propensity score distances

• Intuitive to use the raw absolute differences in the PS:

𝐷𝑖𝑗 = |𝑒(𝑋𝑖) − 𝑒(𝑋𝑗)|

• Better to use the linear propensity score, logit(𝑒(𝑋𝑖)) = 𝑋𝑖𝛽:

𝐷𝑖𝑗 = |logit(𝑒(𝑋𝑖)) − logit(𝑒(𝑋𝑗))|

• Accounts for non-linearity in the substantive differences in the
PS:

▶ 0.05 → 0.10 is more important than 0.50 → 0.55.



True vs. estimated propensity scores

• Balancing properties of the PS depend on knowing the true
PS function, 𝑒(𝑥).

• In observational studies we never know the true PS ⇝
estimate it 𝑒̂(𝑥).

• Is balancing on 𝑒̂(𝑋𝑖) sufficient? No idea!!
▶ Have to check if 𝑋𝑖 is actually balanced.
▶ Somewhat deflates the benefits of PS matching/balancing.

• ⇝ “propensity score tautology”



Euclidean distance

• The Euclidean distance metric just uses the sum of the
normalized distances for each covariate.

▶ “Closeness” is standardized across covariates.

• Suppose that 𝑋𝑖 = (𝑋𝑖􏷠, … , 𝑋𝑖𝐾 )′, so that there are 𝐾
covariates.

• Then the Euclidean distance metric is:

𝐷𝑖𝑗 =
􏽭
⃓⃓
⃓
⎷

𝐾
􏾜
𝑘=􏷠

(𝑋𝑖𝑘 − 𝑋𝑗𝑘)􏷡

􏾦𝜎𝑘

• Here, 􏾦𝜎𝑘 is the standard deviation of the 𝑘th variable:

􏾦𝜎􏷡𝑘 =
1

𝑁 − 1

𝑁
􏾜
𝑖=􏷠
(𝑋𝑖𝑘 − 𝑋̅𝑘)



Mahalanobis distance

• Mahalanobis distance: Euclidean distance adjusted for
covariance in the data.

• Intuition: if 𝑋𝑖𝑘 and 𝑋𝑖𝑘′ are two covariates that are highly
correlated, then their contribution to the distances should be
lower.

▶ Easy to get close on correlated covariates ⇝ downweight.
▶ Harder to get close on uncorrelated covariates ⇝ upweight.

• Metric:
𝐷𝑖𝑗 = √(𝑋𝑖 − 𝑋𝑗)

′􏾧Σ−􏷠(𝑋𝑖 − 𝑋𝑗)

• 􏾧Σ is the estimated variance-covariance matrix of the
observations:

􏾧Σ = 1
𝑁

𝑁
􏾜
𝑖=􏷠
(𝑋𝑖 − 𝑋̅)(𝑋𝑖 − 𝑋̅)𝑇



Complications

• Combining distance metrics:
▶ Exact on race/gender, Mahalanobis on the rest.

• Some matches are too far on the distance metric.
▶ Dropping those matches (treated and control) improves

balance.
▶ Dropping treated units changes the quantity of interest.

• Implementation: a caliper, 𝑐, is the maximum distance we
would accept:

𝐷𝑖𝑗 =

⎧⎪⎪⎨
⎪⎪⎩
√(𝑋𝑖 − 𝑋𝑗)

′􏾧Σ−􏷠(𝑋𝑖 − 𝑋𝑗) if |logit(𝑒(𝑋𝑖)) − logit(𝑒(𝑋𝑗))| ≤ 𝑐
∞ if |logit(𝑒(𝑋𝑖)) − logit(𝑒(𝑋𝑗))| > 𝑐



4/ Estimands and
Matching Methods



Estimands

• Matching easiest to justify for the ATT.
▶ Dropping control units doesn’t affect this identification.

• Can also identify the ATC by finding matched treated units
for the controls.

• Combine the two to get the ATE:

𝜏 = 𝜏𝐴𝑇𝑇ℙ(𝐷𝑖 = 1) + 𝜏𝐴𝑇𝐶ℙ(𝐷𝑖 = 0)

• Estimated:
􏾦𝜏 = 􏾦𝜏𝐴𝑇𝑇 􏿶

𝑁𝑡
𝑁 􏿹 + 􏾦𝜏𝐴𝑇𝐶 􏿶

𝑁𝑐
𝑁 􏿹



Moving the goalposts

• Common support: finding the subspace of 𝑋𝑖 where there is
overlap between the treated and control groups.

▶ Have to extrapolate outside is region.
▶ Theoretical: effect of voting for those under 18

(ℙ(𝐷𝑖 = 1|𝑋𝑖 < 18) = 0).
▶ Empirical: no/extremely few treated units in a sea of controls.
▶ Solution: restrict analysis to common support (dropping

treated and controls).
• Moving the goalposts: dropping treated units.

▶ We move away from being able to identify the ATT.
▶ Now it’s the ATT in the matched subsample (sometimes called

the feasible ATT).
▶ Good to be clear about this.



Matching methods

• Now that we have distances between all units, we just need to
match!

• For a particular unit, easy:

𝑗(𝑖) = argmin
𝑗∈𝕁𝑐

𝐷𝑖𝑗

▶ 𝕁𝑐 are the available controls for matching.
• This is nearest neighbor: “Find the control unit with the

smallest distance metric.”
• Do the same for all treated units.
• What about ties?

▶ Randomly choose between them.



Order effects

• With NN matching, the order matters.
▶ Treated: 𝑋􏷠 = 0.5 and 𝑋􏷡 = 0.7
▶ Control: 𝑋􏷢 = 0.8 and 𝑋􏷣 = 0.15
▶ Match 1 first: 1← 3 and then 2 ← 4, ∑𝐷𝑖𝑗 = 0.85
▶ Match 2 first: 2← 3 and then 1 ← 4, ∑𝐷𝑖𝑗 = 0.45
▶ NN is “greedy.”

• Optimal matching: Finds the matching solution that
minimizes overall distance.

▶ Find 𝑗(1), … , 𝑗(𝑁𝑡) to minimize: ∑𝑁𝑡
𝑖=𝑖𝐷𝑖𝑗(𝑖)

▶ Tends to find the same set of controls, just matched to
different treated groups.

▶ Useful for finding matched pairs.



GenMatch

• We could extend Mahalanobis distance to weight covariates by
their importance to producing balance.

▶ Bad balance after matching ⇝ tweak these weights and
re-match.

▶ Can we automate this?
• GenMatch is a genetic algorithm that attempts to find the

Mahalanobis weights that produce the best balance.
▶ Randomly a population of different starting vectors (weight

vectors).
▶ Evaluate the “fitness” of each vector (the balance it produces).
▶ Randomly create new population focused on the vectors with

best balance.
▶ Mimics natural selection.



CEM

• Coarsened Exact Matching is akin to stratification.
▶ Stratify/coarsen all continuous covariates into bins: 𝑋∗

𝑖
▶ 𝑋∗

𝑖 now has a discrete number of possible values.
▶ Exact match on 𝑋∗

𝑖 : keep data in strata 𝑋∗
𝑖 = 𝑥∗ if there are at

least 1 treated and 1 control with 𝑋∗
𝑖 = 𝑥∗, drop others.

▶ Use uncoarsened data, 𝑋𝑖, in the analysis stage.
• Example:

▶ Coarsen years of education into: (less than H.S., H.S. degree,
some college, B.A./B.S., Advanced degree)

• Benefits:
▶ Allows you to control the amount of imbalance up front
▶ Coarser ⇝ more imbalanace, finer ⇝ less imbalance



Assessing balance

• All matching methods seek to minimize balance:

ℙ(𝑋𝑖 = 𝑥|𝐷𝑖 = 1, 𝑆) = ℙ(𝑋𝑖 = 𝑥|𝐷𝑖 = 0, 𝑆)

• Choice of balance metric will determine which matching
method does better.

▶ If you use Mahalanobis distance as the balance metric, then
matching on the Mahalanobis score will do well because that’s
what it’s designed to do.

• Options:
▶ Differences-in-means/medians, standardized.
▶ Quantile-quantile plots/KS statistics for comparing the entire

distribution of 𝑋𝑖.
▶ 𝐿􏷠: multivariate histogram.



5/ Post-matching
Analysis



What to do with matched data?

• You matched and pruned the data of non-matches, now what?
• Exact matching: simple difference in means.
• Inexact matching: there will be matching discrepancy:

𝑊𝑖 = 𝑋𝑖 − 𝑋𝑗(𝑖)

• If balance is good then 𝑊𝑖 should be quite small, but could
still be large and produce bias.

• Matching discrepancy will grow with the dimension of 𝑋𝑖



Bias of inexact matching

• Let 𝜇𝑐(𝑥) = 𝔼[𝑌𝑖(0)|𝑋𝑖 = 𝑥] be how the mean of 𝑌𝑖(0) changes
as a function of 𝑋𝑖.

• Take a single matched pair produced by matching:

􏾦𝜏𝑚𝑖 = 𝑌𝑖 − 𝑌𝑗(𝑖)

• We hope this estimates 𝜏(𝑋𝑖), but there is actually bias:

𝔼[􏾦𝜏𝑚𝑖|𝐷𝑖 = 1,𝑋𝑖, 𝑋𝑗(𝑖)] = 𝜏(𝑋𝑖) + (𝜇𝑐(𝑋𝑖) − 𝜇𝑐(𝑋𝑗(𝑖)))􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿍
unit-level bias

• If 𝑋𝑖 has a big effect on the mean of 𝑌𝑖(0) then this bias could
be big!



Bias-corrected estimators

𝐵𝑖 = 𝜇𝑐(𝑋𝑖) − 𝜇𝑐(𝑋𝑗(𝑖))

• How do we get rid of this bias?
▶ Estimate it, 􏾦𝐵𝑖, and subtract it off, (𝑌𝑖 − 𝑌𝑗(𝑖)) − 􏾦𝐵𝑖

• Specify a parametric model for 𝜇𝑐(𝑥) = 𝛼𝑐 + 𝑥′𝛽𝑐 and estimate
􏾦𝛽𝑐 from the control data:

􏾦𝐵𝑖 = 􏾦𝜇𝑐(𝑋𝑖) − 􏾦𝜇𝑐(𝑋𝑗(𝑖)) = (𝑋𝑖 − 𝑋𝑗(𝑖))′ 􏾦𝛽𝑐

• Specification of 𝜇𝑐(𝑥) will matter less after matching.
• Create bias-corrected/adjusted imputations for 𝑌𝑖(0):

􏾧𝑌𝑖(0) = 𝑌𝑗(𝑖) + (𝑋𝑖 − 𝑋𝑗(𝑖))′ 􏾦𝛽𝑐



Bias-corrected inference

􏾧𝑌𝑖(0) = 𝑌𝑗(𝑖) + (𝑋𝑖 − 𝑋𝑗(𝑖))′ 􏾦𝛽𝑐

• Plug this into the same estimator:

􏾦𝜏𝑚,𝑏𝑐 =
1
𝑁𝑡

𝑁𝑡
􏾜
𝑖=􏷠
􏿴𝑌𝑖 − 􏾧𝑌𝑖(0)􏿷

• Variance estimation for this quantity is easiest without
replacement.

• Simply take the variance of the within-match differences:

􏾧𝕍[􏾦𝜏𝑚] =
1
𝑁𝑡

𝑁𝑡
􏾜
𝑖=􏷠
􏿴𝑌𝑖 − 􏾧𝑌𝑖(0) − 􏾦𝜏𝑚,𝑏𝑐􏿷

􏷡



Fully pooled model

• What if we simply run our original analysis model on the
pooled, matching data:

𝑌̃𝑖 = 𝛼𝑝 + 𝜏𝑝 ⋅ 𝐷̃𝑖 + 𝑋̃′
𝑖 𝛽𝑝 + 𝜈𝑖

• 𝑌̃𝑖 is the 2 × 𝑁𝑡 matched treated and control units stacked.
• 􏾦𝜏𝑝 from OLS on this model is a bias-corrected estimate where

we assume that:
𝜇𝑐(𝑥) = 𝜇𝑡(𝑥)

• Still corrects for some of the residual bias left over from the
matching.

• SEs from these models might make additional assumptions
(homoskedasticity, etc).



6/ Wrap-up



Conclusion

• Matching is a technique to reduce model dependence and
avoid parametric modeling assumptions when no unmeasured
confounders holds.

• Lots of different ways to match, each has advantages and
disadvantages.

• Pay careful attention to the quantity of interest when you
drop units.

• Next week:
▶ Weighting methods and posttreatment bias.
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