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where are we? where are we going?
• We’ve learned about the fundamentals of probability and worked with events.
• Now we are going to focus on random variables and their distributions. These

variables are important because they are direct connections to the data we have
in spreadsheets. We want to learn about the distribution of these variables.

list experiments for sensitive questions
• A list experiment is one where we ask respondents to tell us how many items

on a list they agree with, where the contents of the list are randomized across
respondents.

• For instance, perhaps we want to know what proportion of people would be
upset by a black family moving in next door to them. What we would do is the
following.

• Randomly split the survey into two halves. In the first half, ask respondents
how many of the following upset you:

1. the federal government increasing the tax on gasoline;
2. professional athletes getting million-dollar salaries;
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3. large corporations polluting the environment.

• The other half received the same prompt, except with an additional item:

1. the federal government increasing the tax on gasoline;
2. professional athletes getting million-dollar salaries;
3. large corporations polluting the environment;
4. a black family moving in next door.

• It turns out that we can use the answers to these questions to figure out what
proportion of the population would be upset by a black family moving in next
door. But in order to do that, we need to understand random variables.

what are random variables?
• Very simply, random variables are functions that map outcomes of the experi-

ment to numbers. Sometimes this connection is obvious or trivial because the
sample space is already a collection of numbers. Other times, we need to con-
struct random variables.

• A random variable is a function that maps from the sample space of an experi-
ment to the real line or X : Ω → R.

• Imagine our experiment was tossing a coin 5 times. The sequence of outcomes
of the flips, ω = HTHTT for example, is not a random variable because it isn’t
a number. Butwe couldmake it into a randomvariable,X ifmake it the number
of heads in the 5 tosses. Notice how the randomvariable takes in outcomes from
the sample space (HTHTT ) and converts them into a number, 2.

• Each sample space can have many different random variables defined on it. For
the coin toss, we could also define a variable to be the number of tails flips, Y .
In this case, these two variables would be related by X = 5− Y .

• We almost always use capital roman letters for the “name” of the random vari-
able such as X . Here that is just shorthand for the number of heads in 5 coin
flips. Obviously when we need to do mathematical operations on the variable,
its shorthand name X will be easier to use. We will refer to a particular value
that X might take with lower case letters, x. So we might write P(X = x) to
be the probability that the number of heads is equal to x.

• Another experiment might be someone turns out to vote. For just one person,
the sample space is Ω = {voted,didn’t vote}. But again these outcomes can be
results of a random variable because they are not numeric. We could define a



3

random variable, X , that converts these outcomes into numbers:

X =

{
1 if voted
0 if didn’t vote

• This last variable is called a Bernoulli or binary random variable.
• Sometimes the sample space is already numeric so creating random variables

is more obvious. What if our experiment is how long a government lasts in a
parliamentary system? Obviously here the sample space is the set of nonnega-
tive numbersΩ = [0,∞). Then our random variable might just be equal to the
outcome itself.

why random variables?
• Why do we need to introduce these functions? Remember that we said that

statistics is the mathematical study of data. In order to use the tools of math to
tackle our questions of interest, we are going to need to work with numerical
outputs.

• Working with the original sample space might be incredibly difficult and very
application specific. But once we convert these sample spaces into random vari-
ables, we can see that very different problems might lead to random variables
with very similar properties.

Why are these variables random?

• It might seem confusing at first that we call these random variables since they
deterministically map from the sample space to the real line. Where does the
randomness come from?

• One way to view random variables is that they are numerical summaries of the
experiments that occurred. Our uncertainty over which outcome will occur
induces uncertainty over which numerical value the random variable will take.

• The randomness in the example of X being whether the person voted or not
comes from the randomness of that outcome, not in the mapping of “vote” into
1 and “didn’t vote” into 0.

discrete random variables
• A discrete random variable is one that takes on only a finite or countably infi-

nite number of values.
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• Countably infinite just means that it takes on any integer and there’s no (obvi-
ous) upper bound to the values that it can take.

• The most obvious discrete r.v. is the binary r.v., which can only take on two
values: 0 and 1.

Examples

• Number of Democrats who win election in the Senate
• An indicator of whether two countries go to war
• The number of times a particular word is used in a document

continuous random variables
• A continuous random variable is one that can take on any real value.
• These are variables for which there are an uncountably infinite number of pos-

sible realizations.
• Note that the variables are only approximately continuous—that is, they have

a very large number of possible realizations and treating it as continuous is a
good approximation.

Examples

• The length of time between two governments in a parliamentary system
• The proportion of voters who turned out
• Budgets allocations to various government programs

probability distributions of random variables
• We want some way of compactly representing the information about how likely

various outcomes of X are. That is, we need to figure out what the distribution
of X will look like.

• Thedistribution of the randomvariable is extremely important to our endeavors
in statistics. Keep in mind that the probability distribution tells us what kind of
data we should expect to see in the world. Our goal in statistics is going to be
to learn about the probability distribution of some variable from data that we
have.

Where do the probability distributions come from?

• The probabilities associated with each realization of the r.v. come from the un-
derlying experiment and sample space. In this diagram, we can see this process.
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We have individual events in the sample space. The r.v. has given these numer-
ical values and plops them over into the real line.

Ω

1
ω

1

1

3

4

R

• The probability of the r.v. equaling some number is just the probability that the
underlying event occurs. If we were drawing these balls from the sample space
with equal probability, then we would find that the probability of drawing a 1
would be 3/5 and the probability of drawing a 3would be 1/5 and the probability
of drawing a 5 would be 0.

• Thus, we can infer the relative distribution of the realizations of the random
variable from the relative frequencies/probabilities of the underlying events.
Different types of experiments will lead to different types of distributions. Many
of these are common across applications, so we can talk about common distri-
butions without explicit reference to the underlying experiment.

• Remember that probabilities on the sample space come from a data generating
process (DGP)—assumptions about the physical or social world. Assuming
that we have independent coin flips induces independent probabilities of 0.5
for each coin flip. Random sampling from a set induces equal probabilities of
each object.

• The DGP, then, will also induce the probability distribution for the random
variable.

Cumulative distribution functions

• For both discrete and continuous variables, one useful function is the cumu-
lative distribution function (cdf), which tells us what the probability is that a
variable is less than a particular realization:

FX(x) ≡ P(X ≤ x).



6

• This function completely describes the distribution of a random variable.
• This general definition is the same for both discrete and continuous variables,

but each has a more specific way of writing the cdf.
• A couple of properties: 1) never decreases, 2) limits to 0 toward negative infin-

ity, limits to 1 toward positive infinity, 3) right-continuous (no jumps when we
approach a point from the right)

• Note that if we knew the cdf then we could calculate the probability of other
events, such as:

P(a ≤ X ≤ b) = F (b)− F (a)

You can see that this works by using the following equality which we can prove
using the properties of probabilities from last week (noting that the complement
of X ≤ a is X ≥ a):

P(X ≤ b) = P(X ≤ a) + P(X ≥ a ∩X ≤ b)
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Discrete r.v.s - probability mass function

• For a discrete r.v., each possible outcome has an associated probability of oc-
curring. Go back to our example on voting. For a particular individual, they
have some probability of voting P(X = 1) and some probability of not voting
P(X = 0).

• But this can generalize as well: we can list out all possible values of the discrete
r.v. and also their associated probabilities. This provides a nice summary of the
entire distribution of the variable.
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• Probability mass function: for a discrete random variable, X , we can define
the probability mass function (pmf) as:

fX(xj) = P(X = xj) j = 1, 2, . . . , k

• Given this, we can write the cdf of a discrete r.v. is:

FX(x) =
∑
xk≤x

fX(xk)

• Someproperties of the pmf fall out of the properties of probability: 0 ≤ fX(x) ≤
1 and

∑k
i=1 fX(xj) = 1.

Example - random assignment to treatment

• Suppose that we’re running a randomized control trial to see if some inter-
vention works—maybe we’re random assigning some people to receive GOTV
mailer or randomly assigning them to watch negative versus positive ads. Let’s
say that we did a poor job at recruiting subjects so we only have 3 subjects.

• Here’s our procedure for randomly assignment: flip a coin for each unit in-
dependently and assign those with heads to Treatment and those with tails to
Control. We’ll define X to be the number of treated units:

X =


0 if (C,C,C)

1 if (T,C,C) or (C, T,C) or (C,C, T )
2 if (T, T, C) or (C, T, T ) or (T,C, T )
3 if (T, T, T )

• We can use the underlying probabilities of the coin flips to calculate the proba-
bility of each outcome. First note thatP(C, T,C) = P(C)P(T )P(C) = 1

2
1
2
1
2 =

1
8 , where the first equality holds by independence of the coin flips and the sec-
ond by the fair coin assumption. Also, note that this is true for any of the out-
comes. Thus,

fX(0) = P(X = 0) = P(C,C,C) =
1

8

fX(1) = P(X = 1) = P(T,C,C) + P(C, T,C) + P(C,C, T ) =
3

8

fX(2) = P(X = 2) = P(T, T,C) + P(C, T, T ) + P(T,C, T ) =
3

8

fX(3) = P(X = 3) = P(T, T, T ) =
1

8
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• What’s P(X = 4)?

• We could plot this pmf using R:

## plot the pdf of a Normal random variable

plot(x = c(0,1,2,3), y = c(1/8, 3/8, 3/8, 1/8), type = ”h”, ylab = ”f(x)”,

xlab = ”x”, lwd = 10, xlim = c(-0.5,3.5), ylim = c(0, 0.5), col = ”grey50”)

0 1 2 3

0
.0

0
.2

0
.4

x

f(
x
)

• Question: Does this seem like a good way to assign treatment? What is one
major problem with it? Can you think of another way to assign treatment that
would avoid these problems?

Some important discrete distributions

• Let X be a binary variable with P(X = 1) = p and, thus, P(X = 0) = 1− p,
where p ∈ [0, 1]. Then we say that X follows a Bernoulli distribution with the
following pmf:

fX(x) = px(1− p)1−x for x ∈ {0, 1}.

• Probably themost famous distribution for a discrete r.v. is the discrete uniform
distribution that puts equal probability on each value that X can take:

fX(x) =

{
1/k for x = 1, . . . , k

0 otherwise

• Note that we can summarize these distributions with one number—with the
discrete distribution it’s the number of possible outcomes andwith theBernoulli
distribution it is probability of variable being 1.
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Continuous r.v.s - probability density function

• With a continuous r.v., we want to do something similar—describe how likely
some set of outcomes are. We might think to take the same approach as with a
discrete r.v. and just go through each possible value of X and list out its corre-
sponding probability. This approach breaks down, though, when the number
of possible values is uncountable because the number of possible realizations is
massive (there is an infinite number of them in any subset of the real line).

• Thismeans that we have to take the probability of any particular realization (for
example, 2.32879873 . . .) as 0 and instead we will work with the probability of
X being in some set B.

• Thus, we will define the probability density function (pdf) for a continuous
random variable, X as the function fX(x) ≥ 0 for all x and for a set B ⊂ R:

P(X ∈ B) =

∫
B
fX(x)dx.

• The uniform distribution on the (a, b) interval is the distribution where the
probability of an interval is equal to one over its length. WewriteX ∼ Unif(a, b)
and it has the pdf:

fX(x) =


1

b− a
for x ∈ [a, b]

0 otherwise

• Note that two conditions on the pdf must be met. First, fX(x) ≥ 0 for all x.
Second, the total density must be equal to 1. That is,∫ ∞

−∞
fX(x)dx = 1

.
• In particular, we have the following, when a ≤ b, then we can find the proba-

bility of X being between a and b as:

P(a ≤ X ≤ b) =

∫ b

a
fX(x)dx.

• The pdf gives us information about how likely various outcomes are. Regions
with higher values of the pdf are areas where we are more likely to see a realiza-
tion of X .
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## plot the pdf of a Normal random variable

curve(dnorm(x), from = -3, to = 3, ylab = ”f(x)”, yaxt = ”n”)

axis(side = 2, las = 2)
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• But be careful! The height of the curve here, fX(x) is not equal to the proba-
bility of x occurring—remember that is 0 for a continuous variable. To get the
probability that X will fall in some region, we need to take the integral, which
corresponds to the area under the pdf curve:

## plot the pdf of a Normal random variable

curve(dnorm(x), from = -3, to = 3, ylab = ”f(x)”, yaxt = ”n”)

axis(side = 2, las = 2)

polygon(c(1,seq(1,2,0.01),2), c(0,dnorm(seq(1,2,0.01)), 0), col = ”grey50”, border = NA)
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• Given this, we can write the cdf of a continuous r.v. as:

FX(x) =

∫ x

−∞
fX(t)dt

Note that here we use t in the place of where x usually is so that it doesn’t get
mixed up with the x in the integral operation.

• TheNormal distribution is the classic “bell-shaped” curve. It is extremely use-
ful and ubiquitous in statistics. If X has a Normal distribution, we write X ∼
N(µ, σ2), where µ is the expected value of the distribution and σ2 is the vari-
ance. We’ll define those concepts in just a bit.

• The pdf for the Normal distribution is:

fX(x) =
1

σ
√
2π

exp
{
− 1

2σ2
(x− µ)2

}
.

• When the mean is 0 and the variance is 1, we call this the standard Normal
distribution.

• The reason this distribution comes up so much is that many things follow an
approximately Normal distribution.

• We’ll cover more distributions as we need them for statistical inference. In Gov
2001, you’ll learn about quite a few more distributions.
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properties of distributions
• So now we have these functions that describe what realizations of a random

variable are more likely than others. In general, we’re not going to know these
distributions, but we often want to learn about them.

• Question: What is the difference between these two density curves? Howmight
we summarize this difference?

-3 -2 -1 0 1 2 3

x

• As we’ve seen, distributions can be these complicatedmathematical expressions
that are hard to interpret. These two distribution have many differences: one
is the probability that each places around -1, another is how much they place
around 2, and so forth.

• It would be nice, however, to be able to summarize these distributions quickly
so that we can have an intuitive understanding of where most of the data will
be. To do this, we can think of two features of distribution that are easily quan-
tifiable and informative: the center of the distribution and the spread of that
distribution around its center.

measures of central tendency - expected value
• The central tendency of the distribution is a measure of the “middle” of the

distribution. There are a couple of ways wemight think about where themiddle
is.

• Thesemeasures are one-number summaries of the distribution in the sense that
they represent our best guess of the value of X before we see it. = The measure
of central tendency we will focus on in this class is the expected value, which is
also called the expectation or the mean of the distribution.
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• We refer to expected value of X as E[X] or µ.

Motivation - calculating averages

• Imagine we had a bunch of numbers an you wanted to calculate the average:
(1,1,3,4,4,5). Obviously, you would add them up and divide by the number of
items in the sum:

1 + 1 + 3 + 4 + 4 + 5

6
=

18

6
3

• Now, you could always have calculated that a slightly different way:

1

6
× 1 +

1

6
× 1 +

1

6
× 3 +

1

6
× 4 +

1

6
× 4 +

1

6
× 5

and if we group terms we get:

2

6
× 1 +

1

6
× 3 +

2

6
× 4 +

1

6
× 5

• This last expression is another way to calculate the mean: sum up the values in
the set, weighted by their proportion in the set. This form is the exact way that
we’ll think of the mean.

Definition

• As with the distribution, we calculate the expected value differently for discrete
and continuous random variables. For both of them, the expected value is a
weighted average of the realizations weighted by the probability of occurring.

• For discrete X , this is straightforward:

E[X] =
k∑

j=1

xjf(xj)

• For continuousX , this is slightly more complicated because we have to use the
integral:

E[X] =

∫
xf(x)dx

• Exercise: Let X be a Bernoulli r.v. with P(X = 1) = p. Use the definition of
the expected value to calculate E[X].

• Sometimes we will calculate the expectation from the distribution (like in the
next example). If we know the distribution of the data, though (Bernoulli, Uni-
form, Normal), then the expected value is usually just a known function of the
parameters (like in the above example with the Bernoulli).
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Example - number of treated units

• Let’s go back to the number of treated units to figure how many units we should
expect to be treated in our experiment:

E[X] =

k∑
j=1

xjf(xj) = 0× fX(0) + 1× fX(1) + 2× fX(2) + 3× fX(3)

= 0× 1

8
+ 1× 3

8
+ 2× 3

8
+ 3× 18

= 0 +
3

8
+

6

8
+

3

8
=

12

8
= 1.5

• If we look back at the pmf of this distribution, it makes a lot of sense that the
answer would 1.5 since that is in the middle of the distribution.

• This answer brings up an interesting feature of the expected value: it doesn’t
have to be one of the values that the r.v. can take.

Properties of the expected value

• The expected value has a lot of nice properties that make it easy to work with.
• Both of the key properties of expected values are that they are linear. What does

that mean?
• Additivity: (expectation of sums are sums of expectations)

E[X + Y ] = E[X] + E[Y ]

• Homoegeneity: Suppose that a and c are constants. Then,

E[aX + c] = aE[X] + c

• Law of the Unconscious Statistician, or LOTUS. If g(X) is a function of a dis-
crete random variable, then

E[g(X)] =
∑
x

g(x)fX(x),

which basically says that the expected value of the transformation of the random
variable is just the weighted average of the transformed outcomes.

Example: list experiments

• Let’s say that Y is the number of items that people say upset them with the
additional “black family” item and X be the number of items that upset them
with just the 3 baseline items. Then, we could write Y = X +A, whereA = 1
if the black neighbors question upset them and A = 0 it did not.
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• Then, we know that E[Y ]− E[X] = E[A], but can you prove that?
• If A is a Bernoulli r.v., then how can we interpret E[A]?

measures of spread
• Now we have some sense of where the middle of the distribution is, but we also

want to know how spread out the distribution is around that middle.
• We’ll talk about two of these that are closely related: the variance and the stan-

dard deviation.

Variance

• The variance is the average of the squared distances from the mean. We some-
times denote it σ2

X . In general, we write it as:

Var[X] = E[(X − E[X])2]

• Since the squared distances are always nonnegative, the variance is also always
nonnegative.

• If most of the observations are close to the expected value, then the variance
will be closer to 0. If the observations are far from the expected value, then the
variance will be higher.

• We can use LOTUS from above to calculate the variance for a discrete random
variable:

Var[X] =
∑
x

(x− E[X])2fX(x)

• And we can apply the same principle for continuous random variables:

Var[X] =

∫ ∞

−∞
(x− E[X])2fX(x)dx

• The standard deviation is just the (positive) square root of the variance: σX =√
Var[X]. You can interpret this as the average distance from the expected

value of the distribution. If someone told you the mean and asked you how far
away a random draw from the distribution would be
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Example - number of treated units

• Let’s go back to the number of treated units to figure out the variance of the
number of treated units:

E[X] =

k∑
j=1

(xj − E[X])2f(xj)

= (0− 1.5)2 × fX(0) + (1− 1.5)2 × fX(1) + (2− 1.5)2 × fX(2) + (3− 1.5)2 × fX(3)

= (−1.5)2 × 1

8
+ (−0.5)2 × 3

8
+ 0.52 × 3

8
+ 1.52 × 18

= 2.25× 1

8
+ 0.25× 3

8
+ 0.25× 3

8
+ 2.25× 18 = 0.75

• Exercise: What’s the standard deviation for this distribution?

Properties of variances

• Variances have slightly different properties than expectations, but there are sim-
ilar flavors. First, note that the variance of a constant, b, is 0: Var[b] = 0. You
should use the definition of the variance to convince yourself why that is the
case (hint: what’s the expected value of a constant?).

• Is the variance linear like the expectation? No, but here’s what we can say about
the variance:

Var[aX + b] = a2Var[X]

• We’ll say more about the variance of the sum of two random variables Var(X+
Y ) when we get to multiple random variables next time.
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