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1/ Today’s agenda
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Logistics

• HW4 due tonight.

• Midterm 2 next Thursday.

▶ Same basic structure as last midterm.
▶ Cumulative, but more focused on new material.
▶ Review session on Tuesday.
▶ Practice midterm out now.
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Where are we? Where are we going?

• Up to now: what kinds of samples should we observe if we know the
population distribution?

• Now: what can I learn about the population distribution from my sample.
• Lessons today applicable to most statistical procedures.

5 / 36



How popular is Donald Trump?

• What proportion of the public approves of Trump’s job as president?
• Latest Gallup poll:

▶ Oct. 29th–Nov. 4th
▶ 1500 adult Americans
▶ Telephone interviews
▶ Approve (40%), Disapprove (54%)

• What can we learn about Trump approval in the population from this one
sample?
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2/ Samples and estimators
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Samples from the population

• Our focus: simple random sample of size 𝑛 from some population 𝑌1, … , 𝑌𝑛▶ ⇝ i.i.d. random variables
▶ e.g.: 𝑌𝑖 = 1 if 𝑖 approves of Trump, 𝑌𝑖 = 0 otherwise.

• Statistical inference is using data to guess something about the population
distribution of 𝑌𝑖.
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Point estimation

• Point estimation: providing a single “best guess” as to the value of some
fixed, unknown quantity of interest, 𝜃.

▶ 𝜃 is a feature of the population distribution
▶ Also called: parameters.

• Examples of quantities of interest:
▶ 𝜇 = 𝔼[𝑌𝑖]: the population mean (turnout rate in the population).▶ 𝜎 2 = 𝕍[𝑌𝑖]: the population variance.▶ 𝜇1 − 𝜇0 = 𝔼[𝑌(1)] − 𝔼[𝑌(0)]: the population ATE.

• These are the things we want to learn about.
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Estimators

Estimator

An estimator, 𝜃, of some parameter 𝜃, is some function of the sample:
𝜃 = ℎ(𝑌1, … , 𝑌𝑛).

• An estimate is one particular realization of the estimator
• Ideally we’d like to know the estimation error, 𝜃 − 𝜃
• Problem: 𝜃 is unknown.
• Solution: figure out the properties of 𝜃 using probability.

▶ 𝜃 is a r.v. because it is a function of r.v.s.
▶ ⇝ 𝜃 has a distribution.
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3/ Properties of estimators
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Estimating Trump’s support

• Parameter 𝜃: population proportion of adults who support Trump
• There are many different possible estimators:

▶ 𝜃 = 𝑌𝑛 the sample proportion of respondents who support Trump.▶ 𝜃 = 𝑌1 just use the first observation▶ 𝜃 = max(𝑌1, … , 𝑌𝑛)▶ 𝜃 = 0.5 always guess 50% support
• How good are these different estimators?
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Survey

• Assume a simple random sample of 𝑛 voters: 𝑛 = 1500
• Define r.v. 𝑌𝑖 for Trump approval:▶ 𝑌𝑖 = 1⇝ respondent 𝑖 approves of Trump

▶ 𝑌𝑖 = 0⇝ respondent 𝑖 disapproves of Trump
• 𝑌𝑖 is Bernoulli with probability of success 𝑝

▶ “probability of success” = “probability of randomly selecting a Trump
approver”

▶ Remember that 𝑝 is the expectation of 𝑌𝑖▶ That is, 𝑝 = ℙ(𝑌𝑖 = 1) = 𝔼(𝑌𝑖)
• Sample proportion is the same as the sample mean:

𝑌 = 1
𝑛

𝑛
∑
𝑖=1

𝑌𝑖 = number who support Trump
𝑛

• 𝜃 = 𝑝 and 𝜃 = 𝑌
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Sample mean properties

sample mean = population mean + chance error

𝑌 = 𝑝 + chance error

• Remember: the sample mean is a random variable.
▶ Different samples give different sample means.
▶ Chance error “bumps” sample mean away from population mean

• ⇝ 𝑌 has a distribution across repeated samples.
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Central tendency of the sample mean

• Expectation: average of the estimates across repeated samples.
▶ From last week, 𝔼[𝑌] = 𝔼[𝑌𝑖] = 𝑝
▶ ⇝ chance error is 0 on average:

𝔼[𝑌 − 𝑝] = 𝔼[𝑌] − 𝑝 = 0

• Unbiasedness: Sample proportion is on average equal to the population
proportion.

15 / 36



Spread of the sample mean

• Standard error: how big is the chance error on average?
• We can use a special rule to binary r.v.s:

√𝕍(𝑌) = √
𝑝(1 − 𝑝)

𝑛

• Problem: we don’t know 𝑝!
• Solution: estimate the SE:

√𝕍̂(𝑌) = √
𝑌(1 − 𝑌)

𝑛 = √
0.37 × (1 − 0.37)

1500 ≈ 0.012
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4/ Confidence intervals

17 / 36



Confidence intervals

• Awesome: sample proportion is correct on average.

• Awesomer: get an range of plausible values.

• Confidence interval: way to construct an interval that will contain the true
value in some fixed proportion of repeated samples.
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CLT

𝑌 − 𝑝 = chance error

• How can we figure out a range of plausible chance errors?

▶ Find a range of plausible chance errors and add them to 𝑌
• Central limit theorem:

𝑌 approx∼ 𝑁 (𝔼(𝑌𝑖),
𝕍(𝑌𝑖)

𝑛 )

• In this case:

𝑌 approx∼ 𝑁 (𝑝, 𝑝(1 − 𝑝)
𝑛 )

• Chance error: 𝑌 − 𝑝 is approximately normal with mean 0 and SE equal to

√
𝑝(1−𝑝)

𝑛
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Chance errors

−3 × SE −2 × SE −SE 0 SE 2 × SE 3 × SE

0.95

• We know 95% of chance errors will be within ≈ 2 × 𝑆𝐸
▶ (actually it’s 1.96 × 𝑆𝐸)

• ⇝ range of plausible chance errors is ±1.96 × 𝑆𝐸
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Confidence interval

• First, choose a confidence level.
▶ What percent of chance errors do you want to count as “plausible”?
▶ Convention is 95%.

• 100 × (1 − 𝛼)% confidence interval:

𝐶𝐼 = 𝑌 ± 𝑧𝛼/2 × 𝑆𝐸
▶ In polling, ±𝑧𝛼/2 × 𝑆𝐸 is called the margin of error

• 𝑧𝛼/2 is the 𝑁(0, 1) z-score that would put 𝛼/2 of the probability density
above it.

▶ ℙ(−𝑧𝛼/2 < 𝑍 < 𝑧𝛼/2) = 𝛼
▶ 90% CI⇝ 𝛼 = 0.1⇝ 𝑧𝛼/2 = 1.64
▶ 95% CI⇝ 𝛼 = 0.05⇝ 𝑧𝛼/2 = 1.96
▶ 99% CI⇝ 𝛼 = 0.01⇝ 𝑧𝛼/2 = 2.58
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Standard normal z-scores in R

• qnorm(x, lower.tail = FALSE) will find the value of 𝑧 so that
ℙ(𝑍 < 𝑧) is equal to x, where 𝑍 is 𝑁(0, 1):

qnorm(0.05, lower.tail = FALSE)

## [1] 1.64

qnorm(0.025, lower.tail = FALSE)

## [1] 1.96

qnorm(0.005, lower.tail = FALSE)

## [1] 2.58
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Z-values

−1.64 × SE 0 1.64 × SE

0.90

𝐶𝐼90 = 𝑌 ± 1.64 × 𝑆𝐸
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Z-values

−1.96 × SE 0 1.96 × SE

0.95

𝐶𝐼95 = 𝑌 ± 1.96 × 𝑆𝐸
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Z-values

−2.58 × SE 0 2.58 × SE

0.99

𝐶𝐼99 = 𝑌 ± 2.58 × 𝑆𝐸
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CIs for the Gallup poll
• Gallup poll: 𝑌 = 0.37 with an SE of 0.012.
• 90% CI:

[0.37 − 1.64 × 0.012, 0.37 + 1.64 × 0.012] = [0.350, 0.389]

• 95% CI:

[0.37 − 1.96 × 0.012, 0.37 + 1.96 × 0.012] = [0.346, 0.394]

• 99% CI:

[0.37 − 2.58 × 0.012, 0.37 + 2.58 × 0.012] = [0.339, 0.401]

• More confidence⇝ wider intervals
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Interpretation and simulation

• Be careful about interpretation:
▶ A 95% confidence interval will contain the true value in 95% of repeated

samples.
▶ For a particular calculated confidence interval, truth is either in it or not.

• A simulation can help our understanding:
▶ Draw samples of size 1500 assuming population approval for Trump of

𝑝 = 0.4.
▶ Calculate 95% confidence intervals in each sample.
▶ See how many overlap with the true population approval.
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Plotting the CIs
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5/ How big of a sample do I
need?
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Margin of error

• Margin of error in a close race:

MoE = ±1.96 × 𝑆𝐸 = ±1.96√
0.5 × 0.5

𝑛 ≈ ± 1
√𝑛

• Gallup polls have 𝑛 = 1500 which implies MoE = ±2.9 percentage
points.
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How big does my survey need to be?

• If we know the margin of error that we’d like, we can figure out what sample
size we would need.

• Sample size calculation:

MoE2 = 1.962𝑝(1 − 𝑝)
𝑛 ⇝ 𝑛 = 1.962𝑝(1 − 𝑝)

MoE2

• Say you wanted an MoE of 0.03 for a true proportion of 𝑝 = 0.3:

𝑛 = 1.962 × 0.3 × 0.7
0.032 = 0.81

0.0009 = 900

• But we don’t know 𝑝!⇝ use 𝑝 = 0.5 since this require the biggest 𝑛.
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Next steps

• Today: how to assess uncertainty in our survey estimates.

• Aǒter midterm:

▶ uncertainty in estimating treatment effects.
▶ hypothesis tests.
▶ uncertainty in linear regression.
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