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1/ Today’s agenda
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Logistics

• Mid-semester evaluation out—please respond!

• DataCamp 4 due Thursday.
• HW 3 going out today, due next Thursday.
• Matt’s OH moved to Fri, 10:30am-12:00pm this week only.

4 / 43



Logistics

• Mid-semester evaluation out—please respond!
• DataCamp 4 due Thursday.

• HW 3 going out today, due next Thursday.
• Matt’s OH moved to Fri, 10:30am-12:00pm this week only.

4 / 43



Logistics

• Mid-semester evaluation out—please respond!
• DataCamp 4 due Thursday.
• HW 3 going out today, due next Thursday.

• Matt’s OH moved to Fri, 10:30am-12:00pm this week only.

4 / 43



Logistics

• Mid-semester evaluation out—please respond!
• DataCamp 4 due Thursday.
• HW 3 going out today, due next Thursday.
• Matt’s OH moved to Fri, 10:30am-12:00pm this week only.

4 / 43



Final project

• Final project:

▶ Short report that states a research question and answers it using a data set
that you find.

▶ A few pages long.
• Group project:

▶ No more than 4 people in a group.
▶ Due to feedback on the surveys, we have decided to allow for people to work

individually.
▶ Graded the same, no matter the group size.

• Timeline:

▶ Fill out surveys on Canvas (under “Final Project”) by Nov. 1.
▶ Paragraph describing data, research questions due Nov. 21.
▶ Rmd file with analyses due Nov. 30.
▶ Final report due Dec. 10.
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Where are we? Where are going?

• Last time: used sample means to make prediction about future events
based on the past.

• Now: how can we use one variable to predict another?
• Big technical tool: linear regression

▶ Now: how to fit, get predictions
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2/ Prediction using a second
variable
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Predicting my weight

• I’ve been tracking my physical activity and weight for a few years now.

• Can we use my activity to predict my weight on a day-to-day basis?

Name Description
date date of measurements
active.calories calories burned
steps number of steps taken (in 1,000s)
weight weight (lbs)
steps.lag steps on day before (in 1,000s)
calories.lag calories burned on day before
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Predicting using bivariate relationship

• Goal: what’s our best guess about 𝑌𝑖 if we know what 𝑋𝑖 is?

▶ what’s our best guess about my weight this morning if I know how many
steps I took yesterday?

• Terminology:

▶ Dependent/outcome variable: the variable we want to predict (weight).
▶ Independent/explanatory variable: the variable we’re using to predict

(steps).
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• Load the data:

health <- read.csv(”data/health.csv”)
health <- na.omit(health)

• Plot the data:

plot(health$steps.lag, health$weight, pch = 19,
col = ”dodgerblue”,
xlim = c(0, 27), ylim = c(150, 180),
xlab = ”Steps on day prior (in 1000s)”,
ylab = ”Weight”,
main = ”Weight and Steps”)
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Correlation and scatterplots

• Recall the definition of correlation:

1
𝑛 − 1

𝑛
∑
𝑖=1

[(z-score for 𝑥𝑖) × (z-score for 𝑦𝑖)]

• Correlation between lagged steps and weight:

cor(health$steps.lag, health$weight)

## [1] -0.191

• Correlation and scatter-plots:

1. positive correlation⇝ upward slope
2. negative correlation⇝ downward slope
3. high correlation⇝ tighter, closer to a line
4. correlation cannot capture nonlinear relationship.
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(d) correlation = -0.09
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3/ Linear regression
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Using a line to predict

• Prediction: for any value of 𝑋, what’s the best guess about 𝑌?

• Simplest possible way to relate two variables: a line.

𝑦 = 𝑚𝑥 + 𝑏

• Problem: for any line we draw, not all the data is on the line.

▶ Some weights will be above the line, some below.
▶ Need a way to account for chance variation away from the line.
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Linear regression model

• Model for the line of best fit:

𝑌𝑖 = 𝛼⏟
intercept

+ 𝛽⏟
slope

⋅𝑋𝑖 + 𝜖𝑖⏟
error term

• Coefficients/parameters (𝛼, 𝛽): true unknown intercept/slope of the line of
best fit.

• Chance error 𝜖𝑖: accounts for the fact that the line doesn’t perfectly fit the
data.

▶ Each observation allowed to be off the regression line.
▶ Chance errors are 0 on average.
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Interpreting the regression line

𝑌𝑖 = 𝛼 + 𝛽 ⋅ 𝑋𝑖 + 𝜖𝑖

• Intercept 𝛼: average value of 𝑌 when 𝑋 is 0

▶ Average weight when I take 0 steps the day prior.
• Slope 𝛽: average change in 𝑌 when 𝑋 increases by one unit.

▶ Average decrease in weight for each additional 1,000 steps.

• But we don’t know 𝛼 or 𝛽. How can we estimate them?
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• But we don’t know 𝛼 or 𝛽. How can we estimate them?
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Estimated coefficients

• Parameters: 𝛼, 𝛽

▶ Unknown features of the data-generating process.
▶ Chance error makes these impossible to observe directly.

• Estimates: 𝛼, 𝛽

▶ An estimate is a function of the data that is our best guess about some
parameter.

• Regression line: 𝑌 = 𝛼 + 𝛽 ⋅ 𝑥

▶ Average value of 𝑌 when 𝑋 is equal to 𝑥.
▶ Represents the best guess or predicted value of the outcome at 𝑥.
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Line of best fit
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Why not this line?

0 5 10 15 20 25

150

155

160

165

170

175

180

Weight and Steps

Steps on day prior (in 1000s)

W
ei

gh
t

20 / 43



4/ Ordinary least squares
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Least squares

• How do we figure out the best line to draw?

▶ Fitted/predicted value for each observation: 𝑌𝑖 = 𝛼 + 𝛽𝑋𝑖
▶ Residual/prediction error: 𝜖𝑖 = 𝑌𝑖 − 𝑌

• Get these estimates by the least squares method.

• Minimize the sum of the squared residuals (SSR):

SSR =
𝑛

∑
𝑖=1

𝜖2𝑖 =
𝑛

∑
𝑖=1

(𝑌𝑖 − 𝛼 − 𝛽𝑋𝑖)2

• This finds the line that minimizes the magnitude of the prediction errors!
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Linear regression in R
• R will calculate least squares line for a data set using lm().

▶ Jargon: “fit the model”
▶ Syntax: lm(y ~ x, data = mydata)
▶ y is the name of the dependent variance, x is the name of the independent

variable and mydata is the data.frame where they live

fit <- lm(weight ~ steps.lag, data = health)
fit

##
## Call:
## lm(formula = weight ~ steps.lag, data = health)
##
## Coefficients:
## (Intercept) steps.lag
## 170.675 -0.231

• Interpretation?
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Coefficients and fitted values

• Use coef() to extract estimated coefficients:

coef(fit)

## (Intercept) steps.lag
## 170.675 -0.231

• R can show you each of the fitted values as well:

head(fitted(fit))

## 2 3 4 5 6 7
## 167 166 166 168 166 169
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Properties of least squares

• Least squares line always goes through (𝑋, 𝑌).

• Estimated slope is related to correlation:

𝛽 = (correlation of 𝑋 and 𝑌) × SD of 𝑌
SD of 𝑋

• Mean of residuals is always 0.
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5/ Prediction midterm
elections
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Presidential popularity and the midterms

• How does the popularity of a president predict how well their party will do
in the midterm elections?

• Small dataset with information on approval and midterm election
outcomes:

Name Description
year midterm election year
president name of president
party Democrat or Republican
approval Gallup approval rating at midterms
seat.change change in the number of House seat’s for the presi-

dent’s party
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Loading the data

midterms <- read.csv(”data/midterms.csv”)
head(midterms)

## year president party approval seat.change
## 1 1946 Truman D 33 -55
## 2 1950 Truman D 39 -29
## 3 1954 Eisenhower R 61 -4
## 4 1958 Eisenhower R 57 -47
## 5 1962 Kennedy D 61 -4
## 6 1966 Johnson D 44 -47
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Scatterplot
plot(midterms$approval, midterms$seat.change, xlim = c(20, 80),

ylim = c(-70, 20), pch = 19, xlab = ”Presidential Approval”,
ylab = ”Change in President's Pary House Seats”)
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Running a regression
• Run the regression with seat.change as dependent variable and

approval as independent variable:

appseats <- lm(seat.change ~ approval, data = midterms)
appseats

##
## Call:
## lm(formula = seat.change ~ approval, data = midterms)
##
## Coefficients:
## (Intercept) approval
## -96.84 1.42

• Intercept: predicted seat change when presidential approval is 0.
• Slope: a one-percentage point increase in approval ≈ 1.42 increase in
House seats
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Scatterplot
plot(midterms$approval, midterms$seat.change, xlim = c(20, 80),

ylim = c(-70, 20), pch = 19, xlab = ”Presidential Approval”,
ylab = ”Change in President's Pary House Seats”)

abline(appseats) ## appseats is call to lm() from above
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Predicting the next midterm

• Can we get a prediction for Republicans in 2018?

tail(midterms)

## year president party approval seat.change
## 14 1998 Clinton D 66 5
## 15 2002 W. Bush R 63 6
## 16 2006 W. Bush R 38 -30
## 17 2010 Obama D 45 -63
## 18 2014 Obama D 40 -13
## 19 2018 Trump R 38 NA
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Predicting 2018
• We can use the coef() function to access the estimated slope and
intercept:

coef(appseats)

## (Intercept) approval
## -96.84 1.42

• Select the estimates and save them:

a.hat <- coef(appseats)[1] ## estimated intercept
b.hat <- coef(appseats)[2] ## estimated slope

• Use these to create prediction, 𝑌 = 𝛼 + 𝛽 ⋅ 𝑥:

pred2018 <- a.hat + b.hat * 38
pred2018

## (Intercept)
## -42.7
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Scatterplot
plot(midterms$approval, midterms$seat.change, xlim = c(20, 80),

ylim = c(-70, 20), pch = 19, xlab = ”Presidential Approval”,
ylab = ”Change in President's Pary House Seats”)

abline(appseats) ## appseats is call to lm() from above
points(x = 38, y = pred2018, col = ”indianred”, pch = 19)
abline(h = -23, col = ”grey”) ## flips the House

20 30 40 50 60 70 80

-60

-40

-20

0

20

Presidential Approval

Ch
an

ge
 in

 P
re

si
de

nt
's

 P
ar

y 
H

ou
se

 S
ea

ts

40 / 43



Regressions on subsets

• We can run regressions on subsets using the subset argument:

regR <- lm(seat.change ~ approval, data = midterms, subset = party == ”R”)
coef(regR)

## (Intercept) approval
## -81.58 1.15
regD <- lm(seat.change ~ approval, data = midterms, subset = party == ”D”)
coef(regD)

## (Intercept) approval
## -106.03 1.62
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Scatterplot
plot(midterms$approval, midterms$seat.change, xlim = c(20, 80),

ylim = c(-70, 20), pch = 19, xlab = ”Presidential Approval”,
ylab = ”Change in President's Pary House Seats”)

abline(regR, col = ”indianred”)
abline(regD, col = ”dodgerblue”)
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On deck

• Mid-semester evaluation: please respond!

• DataCamp assignment 4: due this Thursday.
• Homework 3: Out today, due next Thursday.
• Start thinking about groups for final project.

43 / 43



On deck

• Mid-semester evaluation: please respond!
• DataCamp assignment 4: due this Thursday.

• Homework 3: Out today, due next Thursday.
• Start thinking about groups for final project.

43 / 43



On deck

• Mid-semester evaluation: please respond!
• DataCamp assignment 4: due this Thursday.
• Homework 3: Out today, due next Thursday.

• Start thinking about groups for final project.

43 / 43



On deck

• Mid-semester evaluation: please respond!
• DataCamp assignment 4: due this Thursday.
• Homework 3: Out today, due next Thursday.
• Start thinking about groups for final project.

43 / 43


	Today's agenda
	Prediction using a second variable
	Linear regression
	Ordinary least squares
	Prediction midterm elections

