Gov 50: 11. Linear Regression

Matthew Blackwell

Harvard University

Fall 2018

- 1. Today's agenda
- 2. Prediction using a second variable
- 3. Linear regression
- 4. Ordinary least squares
- 5. Prediction midterm elections

1/ Today's agenda

• Mid-semester evaluation out-please respond!

- Mid-semester evaluation out-please respond!
- DataCamp 4 due Thursday.

- Mid-semester evaluation out—please respond!
- DataCamp 4 due Thursday.
- HW 3 going out today, due next Thursday.

- Mid-semester evaluation out—please respond!
- DataCamp 4 due Thursday.
- HW 3 going out today, due next Thursday.
- Matt's OH moved to Fri, 10:30am-12:00pm this week only.

• Final project:

• Final project:

Short report that states a research question and answers it using a data set that you find.

• Final project:

- Short report that states a research question and answers it using a data set that you find.
- A few pages long.

• Final project:

- Short report that states a research question and answers it using a data set that you find.
- A few pages long.
- Group project:

- Final project:
 - Short report that states a research question and answers it using a data set that you find.
 - A few pages long.
- Group project:
 - No more than 4 people in a group.

- Final project:
 - Short report that states a research question and answers it using a data set that you find.
 - A few pages long.
- Group project:
 - No more than 4 people in a group.
 - Due to feedback on the surveys, we have decided to allow for people to work individually.

- Final project:
 - Short report that states a research question and answers it using a data set that you find.
 - A few pages long.
- Group project:
 - No more than 4 people in a group.
 - Due to feedback on the surveys, we have decided to allow for people to work individually.
 - Graded the same, no matter the group size.

- Final project:
 - Short report that states a research question and answers it using a data set that you find.
 - A few pages long.
- Group project:
 - No more than 4 people in a group.
 - Due to feedback on the surveys, we have decided to allow for people to work individually.
 - Graded the same, no matter the group size.
- Timeline:

- Final project:
 - Short report that states a research question and answers it using a data set that you find.
 - A few pages long.
- Group project:
 - No more than 4 people in a group.
 - Due to feedback on the surveys, we have decided to allow for people to work individually.
 - Graded the same, no matter the group size.
- Timeline:
 - Fill out surveys on Canvas (under "Final Project") by Nov. 1.

- Final project:
 - Short report that states a research question and answers it using a data set that you find.
 - A few pages long.
- Group project:
 - No more than 4 people in a group.
 - Due to feedback on the surveys, we have decided to allow for people to work individually.
 - Graded the same, no matter the group size.
- Timeline:
 - Fill out surveys on Canvas (under "Final Project") by Nov. 1.
 - Paragraph describing data, research questions due Nov. 21.

- Final project:
 - Short report that states a research question and answers it using a data set that you find.
 - A few pages long.
- Group project:
 - No more than 4 people in a group.
 - Due to feedback on the surveys, we have decided to allow for people to work individually.
 - Graded the same, no matter the group size.
- Timeline:
 - Fill out surveys on Canvas (under "Final Project") by Nov. 1.
 - Paragraph describing data, research questions due Nov. 21.
 - Rmd file with analyses due Nov. 30.

- Final project:
 - Short report that states a research question and answers it using a data set that you find.
 - A few pages long.
- Group project:
 - No more than 4 people in a group.
 - Due to feedback on the surveys, we have decided to allow for people to work individually.
 - Graded the same, no matter the group size.
- Timeline:
 - Fill out surveys on Canvas (under "Final Project") by Nov. 1.
 - Paragraph describing data, research questions due Nov. 21.
 - Rmd file with analyses due Nov. 30.
 - Final report due Dec. 10.

• Last time: used sample means to make prediction about future events based on the past.

- Last time: used sample means to make prediction about future events based on the past.
- Now: how can we use one variable to predict another?

- Last time: used sample means to make prediction about future events based on the past.
- Now: how can we use one variable to predict another?
- Big technical tool: linear regression

- Last time: used sample means to make prediction about future events based on the past.
- Now: how can we use one variable to predict another?
- Big technical tool: linear regression
 - Now: how to fit, get predictions

2/ Prediction using a second variable

• I've been tracking my physical activity and weight for a few years now.

- I've been tracking my physical activity and weight for a few years now.
- Can we use my activity to predict my weight on a day-to-day basis?

- I've been tracking my physical activity and weight for a few years now.
- Can we use my activity to predict my weight on a day-to-day basis?

Name	Description
date	date of measurements
active.calories	calories burned
steps	number of steps taken (in 1,000s)
weight	weight (lbs)
steps.lag	steps on day before (in 1,000s)
calories.lag	calories burned on day before

• Goal: what's our best guess about Y_i if we know what X_i is?

- Goal: what's our best guess about Y_i if we know what X_i is?
 - what's our best guess about my weight this morning if I know how many steps I took yesterday?

- Goal: what's our best guess about Y_i if we know what X_i is?
 what's our best guess about my weight this morning if I know how many steps I took yesterday?
- Terminology:

- Goal: what's our best guess about Y_i if we know what X_i is?
 - what's our best guess about my weight this morning if I know how many steps I took yesterday?
- Terminology:
 - Dependent/outcome variable: the variable we want to predict (weight).

- Goal: what's our best guess about Y_i if we know what X_i is?
 - what's our best guess about my weight this morning if I know how many steps I took yesterday?
- Terminology:
 - Dependent/outcome variable: the variable we want to predict (weight).
 - Independent/explanatory variable: the variable we're using to predict (steps).

• Load the data:

health <- read.csv("data/health.csv")
health <- na.omit(health)</pre>

Load the data:

health <- read.csv("data/health.csv") health <- na.omit(health)

• Plot the data:

Load the data:

```
health <- read.csv("data/health.csv")
health <- na.omit(health)</pre>
```

Plot the data:

```
plot(health$steps.lag, health$weight, pch = 19,
    col = "dodgerblue",
    xlim = c(0, 27), ylim = c(150, 180),
    xlab = "Steps on day prior (in 1000s)",
    ylab = "Weight",
    main = "Weight and Steps")
```
Weight and Steps

• Recall the definition of correlation:

$$\frac{1}{n-1} \sum_{i=1}^{n} \left[(z \text{-score for } x_i) \times (z \text{-score for } y_i) \right]$$

• Recall the definition of correlation:

$$\frac{1}{n-1} \sum_{i=1}^{n} \left[(z \text{-score for } x_i) \times (z \text{-score for } y_i) \right]$$

• Correlation between lagged steps and weight:

• Recall the definition of correlation:

$$\frac{1}{n-1} \sum_{i=1}^{n} \left[(z \text{-score for } x_i) \times (z \text{-score for } y_i) \right]$$

• Correlation between lagged steps and weight:

cor(health\$steps.lag, health\$weight)

Recall the definition of correlation:

$$\frac{1}{n-1} \sum_{i=1}^{n} \left[(z \text{-score for } x_i) \times (z \text{-score for } y_i) \right]$$

• Correlation between lagged steps and weight:

cor(health\$steps.lag, health\$weight)

[1] -0.191

• Correlation and scatter-plots:

Recall the definition of correlation:

$$\frac{1}{n-1} \sum_{i=1}^{n} \left[(z \text{-score for } x_i) \times (z \text{-score for } y_i) \right]$$

• Correlation between lagged steps and weight:

cor(health\$steps.lag, health\$weight)

- Correlation and scatter-plots:
 - 1. positive correlation \rightsquigarrow upward slope

Recall the definition of correlation:

$$\frac{1}{n-1} \sum_{i=1}^{n} \left[(z \text{-score for } x_i) \times (z \text{-score for } y_i) \right]$$

• Correlation between lagged steps and weight:

cor(health\$steps.lag, health\$weight)

- Correlation and scatter-plots:
 - 1. positive correlation \rightsquigarrow upward slope
 - 2. negative correlation \rightsquigarrow downward slope

Recall the definition of correlation:

$$\frac{1}{n-1} \sum_{i=1}^{n} \left[(z \text{-score for } x_i) \times (z \text{-score for } y_i) \right]$$

• Correlation between lagged steps and weight:

cor(health\$steps.lag, health\$weight)

- Correlation and scatter-plots:
 - 1. positive correlation \rightsquigarrow upward slope
 - 2. negative correlation \rightsquigarrow downward slope
 - 3. high correlation \rightsquigarrow tighter, closer to a line

Recall the definition of correlation:

$$\frac{1}{n-1} \sum_{i=1}^{n} \left[(z \text{-score for } x_i) \times (z \text{-score for } y_i) \right]$$

• Correlation between lagged steps and weight:

cor(health\$steps.lag, health\$weight)

- Correlation and scatter-plots:
 - 1. positive correlation \rightsquigarrow upward slope
 - 2. negative correlation \rightsquigarrow downward slope
 - 3. high correlation \rightsquigarrow tighter, closer to a line
 - 4. correlation cannot capture nonlinear relationship.

3/ Linear regression

• Prediction: for any value of X, what's the best guess about Y?

- Prediction: for any value of X, what's the best guess about Y?
- Simplest possible way to relate two variables: a line.

- Prediction: for any value of X, what's the best guess about Y?
- Simplest possible way to relate two variables: a line.

• Problem: for any line we draw, not all the data is on the line.

- Prediction: for any value of X, what's the best guess about Y?
- Simplest possible way to relate two variables: a line.

- Problem: for any line we draw, not all the data is on the line.
 - Some weights will be above the line, some below.

- Prediction: for any value of X, what's the best guess about Y?
- Simplest possible way to relate two variables: a line.

- Problem: for any line we draw, not all the data is on the line.
 - Some weights will be above the line, some below.
 - Need a way to account for **chance variation** away from the line.

$$Y_i = \underbrace{\alpha}_{\text{intercept}} + \underbrace{\beta}_{\text{slope}} \cdot X_i + \underbrace{\epsilon_i}_{\text{error term}}$$

• Model for the line of best fit:

$$Y_i = \underbrace{\alpha}_{\text{intercept}} + \underbrace{\beta}_{\text{slope}} \cdot X_i + \underbrace{\epsilon_i}_{\text{error term}}$$

Coefficients/parameters (α, β): true unknown intercept/slope of the line of best fit.

$$Y_i = \underbrace{\alpha}_{\text{intercept}} + \underbrace{\beta}_{\text{slope}} \cdot X_i + \underbrace{\epsilon_i}_{\text{error term}}$$

- Coefficients/parameters (α, β): true unknown intercept/slope of the line of best fit.
- **Chance error** ϵ_i : accounts for the fact that the line doesn't perfectly fit the data.

$$Y_i = \underbrace{\alpha}_{\text{intercept}} + \underbrace{\beta}_{\text{slope}} \cdot X_i + \underbrace{\epsilon_i}_{\text{error term}}$$

- Coefficients/parameters (α, β): true unknown intercept/slope of the line of best fit.
- **Chance error** ϵ_i : accounts for the fact that the line doesn't perfectly fit the data.
 - Each observation allowed to be off the regression line.

$$Y_i = \underbrace{\alpha}_{\text{intercept}} + \underbrace{\beta}_{\text{slope}} \cdot X_i + \underbrace{\epsilon_i}_{\text{error term}}$$

- Coefficients/parameters (α, β): true unknown intercept/slope of the line of best fit.
- **Chance error** ϵ_i : accounts for the fact that the line doesn't perfectly fit the data.
 - Each observation allowed to be off the regression line.
 - Chance errors are 0 on average.

$$Y_i = \alpha + \beta \cdot X_i + \epsilon_i$$

Intercept α: average value of Y when X is 0

$$Y_i = \alpha + \beta \cdot X_i + \epsilon_i$$

Intercept α: average value of Y when X is 0

Average weight when I take 0 steps the day prior.

$$Y_i = \alpha + \beta \cdot X_i + \epsilon_i$$

- Intercept α: average value of Y when X is 0
 - Average weight when I take 0 steps the day prior.
- **Slope** β : average change in *Y* when *X* increases by one unit.

$$Y_i = \alpha + \beta \cdot X_i + \epsilon_i$$

- Intercept α: average value of Y when X is 0
 - Average weight when I take 0 steps the day prior.
- **Slope** β : average change in *Y* when *X* increases by one unit.
 - Average decrease in weight for each additional 1,000 steps.

$$Y_i = \alpha + \beta \cdot X_i + \epsilon_i$$

- Intercept α: average value of Y when X is 0
 - Average weight when I take 0 steps the day prior.
- Slope β: average change in Y when X increases by one unit.
 - Average decrease in weight for each additional 1,000 steps.
- But we don't know α or β. How can we estimate them?

Unknown features of the data-generating process.

- Unknown features of the data-generating process.
- Chance error makes these impossible to observe directly.

- Unknown features of the data-generating process.
- Chance error makes these impossible to observe directly.
- Estimates: $\widehat{\alpha}, \widehat{\beta}$

- Unknown features of the data-generating process.
- Chance error makes these impossible to observe directly.
- Estimates: $\widehat{\alpha}, \widehat{\beta}$
 - An estimate is a function of the data that is our best guess about some parameter.

- Unknown features of the data-generating process.
- Chance error makes these impossible to observe directly.
- Estimates: $\widehat{\alpha}, \widehat{\beta}$
 - An estimate is a function of the data that is our best guess about some parameter.
- Regression line: $\widehat{Y} = \widehat{\alpha} + \widehat{\beta} \cdot x$

- Unknown features of the data-generating process.
- Chance error makes these impossible to observe directly.
- Estimates: $\widehat{\alpha}, \widehat{\beta}$
 - An estimate is a function of the data that is our best guess about some parameter.
- Regression line: $\widehat{Y} = \widehat{\alpha} + \widehat{\beta} \cdot x$
 - Average value of Y when X is equal to x.

- Unknown features of the data-generating process.
- Chance error makes these impossible to observe directly.
- Estimates: $\widehat{\alpha}, \widehat{\beta}$
 - An estimate is a function of the data that is our best guess about some parameter.
- Regression line: $\widehat{Y} = \widehat{\alpha} + \widehat{\beta} \cdot x$
 - Average value of Y when X is equal to x.
 - Represents the best guess or predicted value of the outcome at x.

Why not this line?

4/ Ordinary least squares

Fitted/predicted value for each observation: $\widehat{Y}_i = \widehat{\alpha} + \widehat{\beta} X_i$

Fitted/predicted value for each observation: $\widehat{Y}_i = \widehat{\alpha} + \widehat{\beta} X_i$

• Residual/prediction error: $\hat{\epsilon_i} = Y_i - \hat{Y}$

Fitted/predicted value for each observation: $\widehat{Y}_i = \widehat{\alpha} + \widehat{\beta} X_i$

- **Residual/prediction error**: $\hat{\epsilon_i} = Y_i \hat{Y}$
- Get these estimates by the **least squares method**.

Fitted/predicted value for each observation: $\widehat{Y}_i = \widehat{\alpha} + \widehat{\beta} X_i$

- **•** Residual/prediction error: $\hat{\epsilon}_i = Y_i \hat{Y}_i$
- Get these estimates by the least squares method.
- Minimize the sum of the squared residuals (SSR):

$$SSR = \sum_{i=1}^{n} \hat{\epsilon}_{i}^{2} = \sum_{i=1}^{n} (Y_{i} - \hat{\alpha} - \hat{\beta}X_{i})^{2}$$

Fitted/predicted value for each observation: $\hat{Y}_i = \hat{\alpha} + \hat{\beta} X_i$

- **Residual/prediction error**: $\hat{\epsilon}_i = Y_i \hat{Y}$
- Get these estimates by the least squares method.
- Minimize the sum of the squared residuals (SSR):

$$SSR = \sum_{i=1}^{n} \hat{\epsilon}_i^2 = \sum_{i=1}^{n} (Y_i - \hat{\alpha} - \hat{\beta} X_i)^2$$

• This finds the line that minimizes the magnitude of the prediction errors!

• R will calculate least squares line for a data set using lm().

- R will calculate least squares line for a data set using lm().
 - Jargon: "fit the model"

- R will calculate least squares line for a data set using lm().
 - Jargon: "fit the model"
 - Syntax: lm(y ~ x, data = mydata)

- R will calculate least squares line for a data set using lm().
 - Jargon: "fit the model"
 - Syntax: lm(y ~ x, data = mydata)
 - y is the name of the dependent variance, x is the name of the independent variable and mydata is the data.frame where they live

- R will calculate least squares line for a data set using lm().
 - Jargon: "fit the model"
 - Syntax: lm(y ~ x, data = mydata)
 - y is the name of the dependent variance, x is the name of the independent variable and mydata is the data.frame where they live

fit <- lm(weight ~ steps.lag, data = health)
fit</pre>

- R will calculate least squares line for a data set using lm().
 - Jargon: "fit the model"
 - Syntax: lm(y ~ x, data = mydata)
 - y is the name of the dependent variance, x is the name of the independent variable and mydata is the data.frame where they live

fit <- lm(weight ~ steps.lag, data = health)
fit</pre>

```
##
## Call:
## lm(formula = weight ~ steps.lag, data = health)
##
## Coefficients:
## (Intercept) steps.lag
## 170.675 -0.231
```

- R will calculate least squares line for a data set using lm().
 - Jargon: "fit the model"
 - Syntax: lm(y ~ x, data = mydata)
 - y is the name of the dependent variance, x is the name of the independent variable and mydata is the data.frame where they live

fit <- lm(weight ~ steps.lag, data = health)
fit</pre>

```
##
## Call:
## Call:
## lm(formula = weight ~ steps.lag, data = health)
##
## Coefficients:
## (Intercept) steps.lag
## 170.675 -0.231
```

Interpretation?

Coefficients and fitted values

• Use coef() to extract estimated coefficients:

coef(fit)

coef(fit)

##	(Intercept)	steps.lag
##	170.675	-0.231

coef(fit)

##	(Intercept)	steps.lag
##	170.675	-0.231

• R can show you each of the fitted values as well:

coef(fit)

##	(Intercept)	steps.lag
##	170.675	-0.231

• R can show you each of the fitted values as well:

head(fitted(fit))

coef(fit)

##	(Intercept)	steps.lag
##	170.675	-0.231

• R can show you each of the fitted values as well:

head(fitted(fit))

##	2	3	4	5	6	7
##	167	166	166	168	166	169

• Least squares line always goes through $(\overline{X}, \overline{Y})$.

- Least squares line always goes through $(\overline{X},\overline{Y})$.
- Estimated slope is related to correlation:

$$\widehat{\beta} = (\text{correlation of } X \text{ and } Y) \times \frac{\text{SD of } Y}{\text{SD of } X}$$

- Least squares line always goes through $(\overline{X},\overline{Y})$.
- Estimated slope is related to correlation:

$$\widehat{\beta} = (\text{correlation of } X \text{ and } Y) \times \frac{\text{SD of } Y}{\text{SD of } X}$$

• Mean of residuals is always 0.

5/ Prediction midterm elections

Presidential popularity and the midterms

• How does the popularity of a president predict how well their party will do in the midterm elections?

Presidential popularity and the midterms

- How does the popularity of a president predict how well their party will do in the midterm elections?
- Small dataset with information on approval and midterm election outcomes:

Presidential popularity and the midterms

- How does the popularity of a president predict how well their party will do in the midterm elections?
- Small dataset with information on approval and midterm election outcomes:

Name	Description
year	midterm election year
president	name of president
party	Democrat or Republican
approval	Gallup approval rating at midterms
seat.change	change in the number of House seat's for the presi-
	dent's party

midterms <- read.csv("data/midterms.csv")
head(midterms)</pre>

midterms <- read.csv("data/midterms.csv") head(midterms)</pre>

##		year	president	party	approval	seat.change
##	1	1946	Truman	D	33	-55
##	2	1950	Truman	D	39	-29
##	3	1954	Eisenhower	R	61	- 4
##	4	1958	Eisenhower	R	57	-47
##	5	1962	Kennedy	D	61	- 4
##	6	1966	Johnson	D	44	-47
Scatterplot

plot(midterms\$approval, midterms\$seat.change, xlim = c(20, 80), ylim = c(-70, 20), pch = 19, xlab = "Presidential Approval", ylab = "Change in President's Pary House Seats")

 Run the regression with seat.change as dependent variable and approval as independent variable:

• Run the regression with seat.change as dependent variable and approval as independent variable:

appseats <- lm(seat.change ~ approval, data = midterms)
appseats</pre>

 Run the regression with seat.change as dependent variable and approval as independent variable:

appseats <- lm(seat.change ~ approval, data = midterms)
appseats</pre>

##

Call: ## lm(formula = seat.change ~ approval, data = midterms) ## ## Coefficients: ## (Intercept) approval ## -96.84 1.42

 Run the regression with seat.change as dependent variable and approval as independent variable:

appseats <- lm(seat.change ~ approval, data = midterms)
appseats</pre>

##

- ## Call: ## lm(formula = seat.change ~ approval, data = midterms) ## ## Coefficients: ## (Intercept) approval ## -96.84 1.42
 - Intercept: predicted seat change when presidential approval is 0.

• Run the regression with seat.change as dependent variable and approval as independent variable:

appseats <- lm(seat.change ~ approval, data = midterms)
appseats</pre>

##

- ## Call:
 ## lm(formula = seat.change ~ approval, data = midterms)
 ##
 ## Coefficients:
 ## (Intercept) approval
 ## -96.84 1.42
 - Intercept: predicted seat change when presidential approval is 0.
 - Slope: a one-percentage point increase in approval \approx 1.42 increase in House seats

Scatterplot

plot(midterms\$approval, midterms\$seat.change, xlim = c(20, 80), ylim = c(-70, 20), pch = 19, xlab = "Presidential Approval", ylab = "Change in President's Pary House Seats")

abline(appseats) ## appseats is call to lm() from above

• Can we get a prediction for Republicans in 2018?

• Can we get a prediction for Republicans in 2018?

tail(midterms)

• Can we get a prediction for Republicans in 2018?

tail(midterms)

##		year	president	party	approval	seat.change
##	14	1998	Clinton	D	66	5
##	15	2002	W. Bush	R	63	6
##	16	2006	W. Bush	R	38	-30
##	17	2010	Obama	D	45	-63
##	18	2014	Obama	D	40	-13
##	19	2018	Trump	R	38	NA

• We can use the coef() function to access the estimated slope and intercept:

• We can use the coef() function to access the estimated slope and intercept:

coef(appseats)

• We can use the coef() function to access the estimated slope and intercept:

coef(appseats)

##	(Intercept)	approval
##	-96.84	1.42

• We can use the coef() function to access the estimated slope and intercept:

coef(appseats)

##	(Intercept)	approval
##	-96.84	1.42

• Select the estimates and save them:

a.hat <- coef(appseats)[1] ## estimated intercept
b.hat <- coef(appseats)[2] ## estimated slope</pre>

• We can use the coef() function to access the estimated slope and intercept:

coef(appseats)

##	(Intercept)	approval
##	-96.84	1.42

• Select the estimates and save them:

a.hat <- coef(appseats)[1] ## estimated intercept
b.hat <- coef(appseats)[2] ## estimated slope</pre>

• Use these to create prediction, $\widehat{Y} = \widehat{\alpha} + \widehat{\beta} \cdot x$:

• We can use the coef() function to access the estimated slope and intercept:

coef(appseats)

##	(Intercept)	approval
##	-96.84	1.42

• Select the estimates and save them:

a.hat <- coef(appseats)[1] ## estimated intercept
b.hat <- coef(appseats)[2] ## estimated slope</pre>

• Use these to create prediction, $\hat{Y} = \hat{\alpha} + \hat{\beta} \cdot x$:

pred2018 <- a.hat + b.hat * 38 pred2018

• We can use the coef() function to access the estimated slope and intercept:

coef(appseats)

##	(Intercept)	approval
##	-96.84	1.42

• Select the estimates and save them:

a.hat <- coef(appseats)[1] ## estimated intercept
b.hat <- coef(appseats)[2] ## estimated slope</pre>

• Use these to create prediction, $\hat{Y} = \hat{\alpha} + \hat{\beta} \cdot x$:

pred2018 <- a.hat + b.hat * 38
pred2018</pre>

(Intercept) ## -42.7

Scatterplot

plot(midterms\$approval, midterms\$seat.change, xlim = c(20, 80), ylim = c(-70, 20), pch = 19, xlab = "Presidential Approval", ylab = "Change in President's Pary House Seats") abline(appseats) ## appseats is call to lm() from above points(x = 38, y = pred2018, col = "indianred", pch = 19) abline(h = -23, col = "grey") ## flips the House

regR <- lm(seat.change ~ approval, data = midterms, subset = party == "R")
coef(regR)</pre>

regR <- lm(seat.change ~ approval, data = midterms, subset = party == "R")
coef(regR)</pre>

(Intercept) approval ## -81.58 1.15

regR <- lm(seat.change ~ approval, data = midterms, subset = party == "R")
coef(regR)</pre>

(Intercept) approval
-81.58 1.15
regD <- lm(seat.change ~ approval, data = midterms, subset = party == "D")
coef(regD)</pre>

regR <- lm(seat.change ~ approval, data = midterms, subset = party == "R")
coef(regR)</pre>

(Intercept) approval
-81.58 1.15
regD <- lm(seat.change ~ approval, data = midterms, subset = party == "D")
coef(regD)</pre>

(Intercept) approval
-106.03 1.62

Scatterplot

plot(midterms\$approval, midterms\$seat.change, xlim = c(20, 80), ylim = c(-70, 20), pch = 19, xlab = "Presidential Approval", ylab = "Change in President's Pary House Seats")

```
abline(regR, col = "indianred")
abline(regD, col = "dodgerblue")
```


• Mid-semester evaluation: please respond!

- Mid-semester evaluation: please respond!
- DataCamp assignment 4: due this Thursday.

- Mid-semester evaluation: please respond!
- DataCamp assignment 4: due this Thursday.
- Homework 3: Out today, due next Thursday.

- Mid-semester evaluation: please respond!
- DataCamp assignment 4: due this Thursday.
- Homework 3: Out today, due next Thursday.
- Start thinking about groups for final project.