Gov 50: 12. Linear Regression (II)

Matthew Blackwell

Harvard University

Fall 2018

1. Today's agenda

- 2. Model fit
- 3. Multiple predictors

1/ Today's agenda

• Midterm evaluation results.

- Midterm evaluation results.
- My office hours rescheduled to tomorrow 10:30am-12:00pm.

- Midterm evaluation results.
- My office hours rescheduled to tomorrow 10:30am-12:00pm.
- DataCamp 4 due tonight.

- Midterm evaluation results.
- My office hours rescheduled to tomorrow 10:30am-12:00pm.
- DataCamp 4 due tonight.
- HW 3 due next Thursday

- Midterm evaluation results.
- My office hours rescheduled to tomorrow 10:30am-12:00pm.
- DataCamp 4 due tonight.
- HW 3 due next Thursday
 - Extra credit worth a good amount of post-curve grade (3%)

Where are we? Where are going?

Trying to get good predictions of some variable.

Where are we? Where are going?

- Trying to get good predictions of some variable.
- Last time: how to use linear regression to predict outcomes using another variable.

Where are we? Where are going?

- Trying to get good predictions of some variable.
- Last time: how to use linear regression to predict outcomes using another variable.
- Now: assess model fit and use more than 1 variable to predict.

Prediction is broadly across different fields.

- Prediction is broadly across different fields.
- Policy:

- Prediction is broadly across different fields.
- Policy:
 - Can policymakers predict where crime is likely occur in a city to deploy police resources?

- Prediction is broadly across different fields.
- Policy:
 - Can policymakers predict where crime is likely occur in a city to deploy police resources?
 - Can a school district predict which students will drop out of school to target counseling interventions?

- Prediction is broadly across different fields.
- Policy:
 - Can policymakers predict where crime is likely occur in a city to deploy police resources?
 - Can a school district predict which students will drop out of school to target counseling interventions?
- Business:

- Prediction is broadly across different fields.
- Policy:
 - Can policymakers predict where crime is likely occur in a city to deploy police resources?
 - Can a school district predict which students will drop out of school to target counseling interventions?
- Business:
 - Can Amazon predict what product a customer is going to buy based on their past purchases (Amazon)?

- Prediction is broadly across different fields.
- Policy:
 - Can policymakers predict where crime is likely occur in a city to deploy police resources?
 - Can a school district predict which students will drop out of school to target counseling interventions?
- Business:
 - Can Amazon predict what product a customer is going to buy based on their past purchases (Amazon)?
 - Can Netflix/YouTube/Spotify predict what movies/TV show/song a person will like based on what they have viewed/listened to in the past?

- Prediction is broadly across different fields.
- Policy:
 - Can policymakers predict where crime is likely occur in a city to deploy police resources?
 - Can a school district predict which students will drop out of school to target counseling interventions?
- Business:
 - Can Amazon predict what product a customer is going to buy based on their past purchases (Amazon)?
 - Can Netflix/YouTube/Spotify predict what movies/TV show/song a person will like based on what they have viewed/listened to in the past?
- Linear regression often used to do these predictions, but how well does our model predict the data?

2/ Model fit

Presidential popularity and the midterms

 Does popularity of the president or recent changes in the economy better predict midterm election outcomes?

Presidential popularity and the midterms

 Does popularity of the president or recent changes in the economy better predict midterm election outcomes?

Name	Description
year	midterm election year
president	name of president
party	Democrat or Republican
approval	Gallup approval rating at midterms
seat.change	change in the number of House seat's for the presi-
	dent's party
rdi.change	change in real disposable income over the year before
	midterms

Loading the data

```
midterms <- read.csv("data/midterms.csv")
head(midterms)</pre>
```

Loading the data

```
midterms <- read.csv("data/midterms.csv")
head(midterms)</pre>
```

```
##
           president party approval seat.change
     year
##
   1 1946
               Truman
                                   33
                                               -55
##
   2 1950
               Truman
                                   39
                                               -29
##
   3 1954 Eisenhower
                           R
                                   61
                                                -4
   4 1958 Eisenhower
                                   57
##
                           R
                                               -47
   5 1962
             Kennedy
                                   61
                                                -4
##
##
   6 1966
             Johnson
                                   44
                                               -47
##
     rdi.change
## 1
             NA
## 2
            8.0
             0.2
## 3
## 4
            -0.8
## 5
            4.1
            3.2
##
   6
```

Fitting the approval model

```
fit.app <- lm(seat.change ~ approval, data = midterms)
fit.app</pre>
```

Fitting the approval model

```
fit.app <- lm(seat.change ~ approval, data = midterms)
fit.app

##
## Call:
## lm(formula = seat.change ~ approval, data = midterms)
##
## Coefficients:
## (Intercept) approval
## -96.84 1.42</pre>
```

Fitting the income model

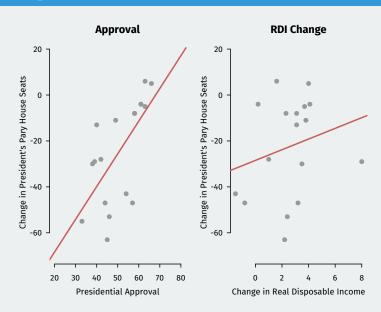
```
fit.rdi <- lm(seat.change ~ rdi.change, data = midterms)
fit.rdi</pre>
```

Fitting the income model

```
fit.rdi <- lm(seat.change ~ rdi.change, data = midterms)
fit.rdi</pre>
```

```
##
## Call:
## lm(formula = seat.change ~ rdi.change, data = midterms)
##
## Coefficients:
## (Intercept) rdi.change
## -28.48 2.33
```

Comparing models



How well does the model "fit the data"?

- How well does the model "fit the data"?
 - More specifically, how well does the model predict the outcome variable in the data?

- How well does the model "fit the data"?
 - More specifically, how well does the model predict the outcome variable in the data?
- Coefficient of determination or R² ("R-squared"):

- How well does the model "fit the data"?
 - More specifically, how well does the model predict the outcome variable in the data?
- Coefficient of determination or R^2 ("R-squared"):
 - Prediction error just using the mean of Y: Total sum of squares

$$TSS = \sum_{i=1}^{n} (Y_i - \overline{Y})^2$$

- How well does the model "fit the data"?
 - More specifically, how well does the model predict the outcome variable in the data?
- Coefficient of determination or R^2 ("R-squared"):
 - Prediction error just using the mean of Y: Total sum of squares

$$TSS = \sum_{i=1}^{n} (Y_i - \overline{Y})^2$$

Prediction error with the model: Sum of squared residuals

$$SSR = \sum_{i=1}^{n} \hat{\epsilon}_i^2$$

- How well does the model "fit the data"?
 - More specifically, how well does the model predict the outcome variable in the data?
- Coefficient of determination or R^2 ("R-squared"):
 - Prediction error just using the mean of Y: **Total sum of squares**

$$TSS = \sum_{i=1}^{n} (Y_i - \overline{Y})^2$$

Prediction error with the model: Sum of squared residuals

$$SSR = \sum_{i=1}^{n} \hat{\epsilon}_i^2$$

Proportional reduction in error how much of the prediction error is eliminated by using the model:

$$R^2 = \frac{TSS - SSR}{TSS}$$

- How well does the model "fit the data"?
 - More specifically, how well does the model predict the outcome variable in the data?
- Coefficient of determination or R^2 ("R-squared"):
 - Prediction error just using the mean of Y: Total sum of squares

$$TSS = \sum_{i=1}^{n} (Y_i - \overline{Y})^2$$

Prediction error with the model: Sum of squared residuals

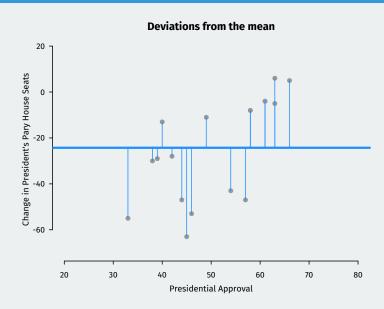
$$SSR = \sum_{i=1}^{n} \hat{\epsilon}_i^2$$

Proportional reduction in error how much of the prediction error is eliminated by using the model:

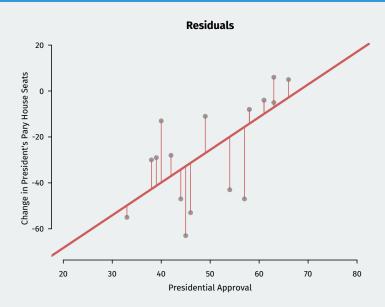
$$R^2 = \frac{TSS - SSR}{TSS}$$

lacktriangle Roughly: proportion of the variation in Y_i "explained by" X_i

Total SS vs SSR



Total SS vs SSR



• To access R^2 from the lm() output, first pass it to the summary() function:

• To access \mathbb{R}^2 from the lm() output, first pass it to the summary() function:

```
fit.app.sum <- summary(fit.app)
fit.app.sum$r.squared</pre>
```

• To access R^2 from the lm() output, first pass it to the summary() function:

```
fit.app.sum <- summary(fit.app)
fit.app.sum$r.squared</pre>
```

```
## [1] 0.431
```

• To access R^2 from the lm() output, first pass it to the summary() function:

```
fit.app.sum <- summary(fit.app)
fit.app.sum$r.squared</pre>
```

```
## [1] 0.431
```

• Compare to the fit using change in income:

• To access \mathbb{R}^2 from the lm() output, first pass it to the summary() function:

```
fit.app.sum <- summary(fit.app)
fit.app.sum$r.squared</pre>
```

```
## [1] 0.431
```

• Compare to the fit using change in income:

```
fit.rdi.sum <- summary(fit.rdi)
fit.rdi.sum$r.squared</pre>
```

• To access R^2 from the lm() output, first pass it to the summary() function:

```
fit.app.sum <- summary(fit.app)
fit.app.sum$r.squared</pre>
```

```
## [1] 0.431
```

• Compare to the fit using change in income:

```
fit.rdi.sum <- summary(fit.rdi)
fit.rdi.sum$r.squared</pre>
```

```
## [1] 0.0544
```

• Which does a better job predicting midterm election outcomes?

• Little hard to see what's happening in that example.

- Little hard to see what's happening in that example.
- Let's look at fake variables x and y:

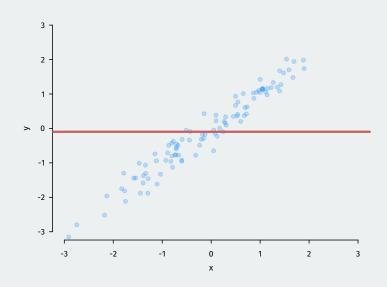
- Little hard to see what's happening in that example.
- Let's look at fake variables x and y:

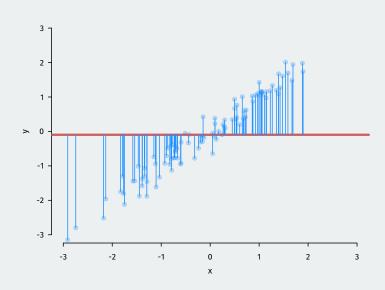
```
fit.x \leftarrow lm(y \sim x)
```

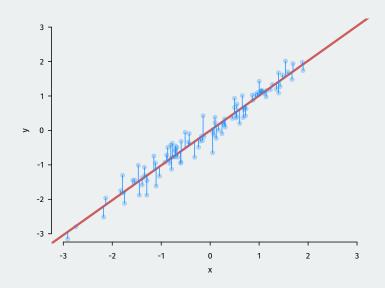
- Little hard to see what's happening in that example.
- Let's look at fake variables x and y:

$$fit.x \leftarrow lm(y \sim x)$$

• Very good model fit: $R^2 \approx 0.95$

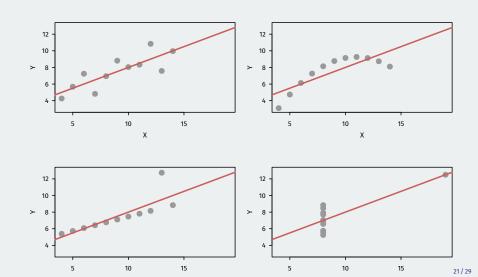






Is R-squared useful?

• Can be very misleading. Each of these samples have the same R^2 even though they are vastly different:



• **In-sample fit**: how well your estimated model helps predict the data used to estimate the model.

- **In-sample fit**: how well your estimated model helps predict the data used to estimate the model.
 - $ightharpoonup R^2$ is a measure of in-sample fit.

- In-sample fit: how well your estimated model helps predict the data used to estimate the model.
 - $ightharpoonup R^2$ is a measure of in-sample fit.
- Out-of-sample fit: how well your estimated model help predict outcomes outside of the sample used to fit the model.

- In-sample fit: how well your estimated model helps predict the data used to estimate the model.
 - $ightharpoonup R^2$ is a measure of in-sample fit.
- Out-of-sample fit: how well your estimated model help predict outcomes outside of the sample used to fit the model.
- **Overfitting**: OLS and other statistical procedures designed to predict in-sample outcomes really well, but may do really poorly out of sample.

- In-sample fit: how well your estimated model helps predict the data used to estimate the model.
 - $ightharpoonup R^2$ is a measure of in-sample fit.
- Out-of-sample fit: how well your estimated model help predict outcomes outside of the sample used to fit the model.
- Overfitting: OLS and other statistical procedures designed to predict in-sample outcomes really well, but may do really poorly out of sample.
 - Example: predicting winner of Democratic presidential primary with gender of the candidate.

- In-sample fit: how well your estimated model helps predict the data used to estimate the model.
 - $ightharpoonup R^2$ is a measure of in-sample fit.
- Out-of-sample fit: how well your estimated model help predict outcomes outside of the sample used to fit the model.
- Overfitting: OLS and other statistical procedures designed to predict in-sample outcomes really well, but may do really poorly out of sample.
 - Example: predicting winner of Democratic presidential primary with gender of the candidate.
 - Until 2016, gender of the canidate was a **perfect** predictor of who wins the primary.

- In-sample fit: how well your estimated model helps predict the data used to estimate the model.
 - $ightharpoonup R^2$ is a measure of in-sample fit.
- Out-of-sample fit: how well your estimated model help predict outcomes outside of the sample used to fit the model.
- Overfitting: OLS and other statistical procedures designed to predict in-sample outcomes really well, but may do really poorly out of sample.
 - Example: predicting winner of Democratic presidential primary with gender of the candidate.
 - Until 2016, gender of the canidate was a perfect predictor of who wins the primary.
 - Prediction for 2016 based on this: Bernie Sanders as Dem. nominee.

- In-sample fit: how well your estimated model helps predict the data used to estimate the model.
 - $ightharpoonup R^2$ is a measure of in-sample fit.
- Out-of-sample fit: how well your estimated model help predict outcomes outside of the sample used to fit the model.
- Overfitting: OLS and other statistical procedures designed to predict in-sample outcomes really well, but may do really poorly out of sample.
 - Example: predicting winner of Democratic presidential primary with gender of the candidate.
 - Until 2016, gender of the canidate was a perfect predictor of who wins the primary.
 - Prediction for 2016 based on this: Bernie Sanders as Dem. nominee.
 - Bad out-of-sample prediction due to overfitting!

- In-sample fit: how well your estimated model helps predict the data used to estimate the model.
 - $ightharpoonup R^2$ is a measure of in-sample fit.
- Out-of-sample fit: how well your estimated model help predict outcomes outside of the sample used to fit the model.
- Overfitting: OLS and other statistical procedures designed to predict in-sample outcomes really well, but may do really poorly out of sample.
 - Example: predicting winner of Democratic presidential primary with gender of the candidate.
 - Until 2016, gender of the canidate was a perfect predictor of who wins the primary.
 - Prediction for 2016 based on this: Bernie Sanders as Dem. nominee.
 - ▶ Bad out-of-sample prediction due to overfitting!
- Could waste tons of governmental or corporate resources with a bad prediction model!

Several procedure exist to guard against overfitting.

- Several procedure exist to guard against overfitting.
- Cross validation is the most popular:

- Several procedure exist to guard against overfitting.
- Cross validation is the most popular:
 - Randomly choose half the sample to set aside (test set)

- Several procedure exist to guard against overfitting.
- Cross validation is the most popular:
 - Randomly choose half the sample to set aside (**test set**)
 - Estimate the coefficients with the remaining half of the units (**training set**)

- Several procedure exist to guard against overfitting.
- Cross validation is the most popular:
 - Randomly choose half the sample to set aside (**test set**)
 - Estimate the coefficients with the remaining half of the units (**training set**)
 - Assess the model fit on the held out test set.

- Several procedure exist to guard against overfitting.
- Cross validation is the most popular:
 - Randomly choose half the sample to set aside (**test set**)
 - Estimate the coefficients with the remaining half of the units (training set)
 - Assess the model fit on the held out test set.
 - Switch the test and training set and repeat, average the results.

- Several procedure exist to guard against overfitting.
- Cross validation is the most popular:
 - Randomly choose half the sample to set aside (**test set**)
 - Estimate the coefficients with the remaining half of the units (**training set**)
 - Assess the model fit on the held out test set.
 - Switch the test and training set and repeat, average the results.
- Congrats, you know machine learning/artificial intelligence!

3/ Multiple predictors

Multiple predictors

• What if we want to predict Y as a function of many variables?

Multiple predictors

• What if we want to predict Y as a function of many variables?

$$Y_i = \alpha + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_k X_{ik} + \epsilon_i$$

Multiple predictors

• What if we want to predict Y as a function of many variables?

$$Y_i = \alpha + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_k X_{ik} + \epsilon_i$$

• Why might we do this?

$$Y_i = \alpha + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_k X_{ik} + \epsilon_i$$

- Why might we do this?
 - Better predictions!

$$Y_i = \alpha + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_k X_{ik} + \epsilon_i$$

- Why might we do this?
 - ► Better predictions!
 - Better interpretation: β_1 is the effect of X_1 holding all other independent variables constant. (**ceteris paribus**)

$$Y_i = \alpha + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_k X_{ik} + \epsilon_i$$

- Why might we do this?
 - ► Better predictions!
 - Better interpretation: β_1 is the effect of X_1 holding all other independent variables constant. (**ceteris paribus**)
- With midterms data:

$$Y_i = \alpha + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_k X_{ik} + \epsilon_i$$

- Why might we do this?
 - ► Better predictions!
 - Better interpretation: β_1 is the effect of X_1 holding all other independent variables constant. (**ceteris paribus**)
- With midterms data:

$$\texttt{seat.change}_i = \alpha + \beta_1 \texttt{approval}_i + \beta_2 \texttt{rdi.change}_i + \epsilon_i$$

• $\widehat{\alpha}$ = -117.2: average seat change president has 0% approval and no change in income levels.

- $\widehat{\alpha}$ = -117.2: average seat change president has 0% approval and no change in income levels.
- $\widehat{\beta}_1 =$ 1.61: average increase in seat change for additional percentage point of approval, **holding RDI change fixed**

- $\widehat{\alpha}$ = -117.2: average seat change president has 0% approval and no change in income levels.
- $\widehat{\beta}_1 =$ 1.61: average increase in seat change for additional percentage point of approval, **holding RDI change fixed**
- $\widehat{\beta}_2=$ 4.213: average increase in seat change for each additional percentage point increase of RDI, **holding approval fixed**

How do we estimate the coefficients?

- How do we estimate the coefficients?
- The same exact way as before: minimize prediction error!

- How do we estimate the coefficients?
- The same exact way as before: minimize prediction error!
- Residuals (aka prediction error) with multiple predictors:

$$\hat{\epsilon}_i = Y_i - \widehat{\alpha} - \widehat{\beta}_1 X_{i1} - \widehat{\beta}_2 X_{i2}$$

- How do we estimate the coefficients?
- The same exact way as before: minimize prediction error!
- Residuals (aka prediction error) with multiple predictors:

$$\hat{\epsilon}_i = Y_i - \widehat{\alpha} - \widehat{\beta}_1 X_{i1} - \widehat{\beta}_2 X_{i2}$$

Find the coefficients that minimizes the sum of the squared residuals:

$$SSR = \sum_{i=1}^{n} \hat{\epsilon}_i^2 = (Y_i - \widehat{\alpha} - \widehat{\beta}_1 X_{i1} - \widehat{\beta}_2 X_{i2})^2$$

ullet R^2 mechanically increases when you add a variables to the regression.

- ullet R^2 mechanically increases when you add a variables to the regression.
 - But this could be overfitting!!

- ullet R^2 mechanically increases when you add a variables to the regression.
 - ► But this could be overfitting!!
- Solution: penalize regression models with more variables.

- \bullet R^2 mechanically increases when you add a variables to the regression.
 - ► But this could be overfitting!!
- Solution: penalize regression models with more variables.
 - Occam's razor: simpler models are preferred

- \bullet R^2 mechanically increases when you add a variables to the regression.
 - ► But this could be overfitting!!
- Solution: penalize regression models with more variables.
 - Occam's razor: simpler models are preferred
- Adjusted R^2 : lowers regular R^2 for each additional covariate.

- \bullet R^2 mechanically increases when you add a variables to the regression.
 - ► But this could be overfitting!!
- Solution: penalize regression models with more variables.
 - Occam's razor: simpler models are preferred
- Adjusted R^2 : lowers regular R^2 for each additional covariate.
 - ► If the added covariates doesn't help predict, adjusted R² goes down!

- \bullet R^2 mechanically increases when you add a variables to the regression.
 - ► But this could be overfitting!!
- Solution: penalize regression models with more variables.
 - Occam's razor: simpler models are preferred
- Adjusted R^2 : lowers regular R^2 for each additional covariate.
 - ► If the added covariates doesn't help predict, adjusted R² goes down!

summary(mult.fit)\$adj.r.squared

- \bullet R^2 mechanically increases when you add a variables to the regression.
 - ► But this could be overfitting!!
- Solution: penalize regression models with more variables.
 - Occam's razor: simpler models are preferred
- Adjusted R^2 : lowers regular R^2 for each additional covariate.
 - If the added covariates doesn't help predict, adjusted R^2 goes down!

summary(mult.fit)\$adj.r.squared

[1] 0.458

- \bullet R^2 mechanically increases when you add a variables to the regression.
 - ► But this could be overfitting!!
- Solution: penalize regression models with more variables.
 - Occam's razor: simpler models are preferred
- Adjusted R^2 : lowers regular R^2 for each additional covariate.
 - If the added covariates doesn't help predict, adjusted R^2 goes down!

summary(mult.fit)\$adj.r.squared

[1] 0.458

summary(mult.fit)\$r.squared

- \bullet R^2 mechanically increases when you add a variables to the regression.
 - ► But this could be overfitting!!
- Solution: penalize regression models with more variables.
 - Occam's razor: simpler models are preferred
- Adjusted R^2 : lowers regular R^2 for each additional covariate.
 - If the added covariates doesn't help predict, adjusted R^2 goes down!

summary(mult.fit)\$adj.r.squared

[1] 0.458

summary(mult.fit)\$r.squared

[1] 0.526

Next week:

- Next week:
 - ► How can we use regression for **causal inference**?

- Next week:
 - ► How can we use regression for **causal inference**?
 - Allowing for different slopes for different groups of observations.

- Next week:
 - ► How can we use regression for **causal inference**?
 - Allowing for different slopes for different groups of observations.
 - Allowing for non-linear effects!