Gov 50: 12. Linear Regression (II)

Matthew Blackwell

Harvard University

Fall 2018

1. Today's agenda

2. Model fit

3. Multiple predictors

1/ Today's agenda

- Midterm evaluation results.
- My office hours rescheduled to tomorrow 10:30am-12:00pm.
- DataCamp 4 due tonight.
- HW 3 due next Thursday
 - Extra credit worth a good amount of post-curve grade (3%)

- Trying to get good predictions of some variable.
- Last time: how to use **linear regression** to predict outcomes using another variable.
- Now: assess model fit and use more than 1 variable to predict.

Why do we care about prediction?

- Prediction is broadly across different fields.
- Policy:
 - Can policymakers predict where crime is likely occur in a city to deploy police resources?
 - Can a school district predict which students will drop out of school to target counseling interventions?
- Business:
 - Can Amazon predict what product a customer is going to buy based on their past purchases (Amazon)?
 - Can Netflix/YouTube/Spotify predict what movies/TV show/song a person will like based on what they have viewed/listened to in the past?
- Linear regression often used to do these predictions, but how well does our model predict the data?

2/ Model fit

Presidential popularity and the midterms

• Does popularity of the president or recent changes in the economy better predict midterm election outcomes?

Name	Description
year	midterm election year
president	name of president
party	Democrat or Republican
approval	Gallup approval rating at midterms
seat.change	change in the number of House seat's for the presi-
	dent's party
rdi.change	change in real disposable income over the year before
	midterms

Loading the data

midterms <- read.csv("data/midterms.csv") head(midterms)</pre>

##		year	president	party	approval	seat.change
##	1	1946	Truman	D	33	-55
##	2	1950	Truman	D	39	-29
##	3	1954	Eisenhower	R	61	- 4
##	4	1958	Eisenhower	R	57	-47
##	5	1962	Kennedy	D	61	-4
##	6	1966	Johnson	D	44	-47
##		rdi.	change			
##	1	NA				
##	2	8.0				
##	3	0.2				
##	4	-0.8				
##	5		4.1			
##	6		3.2			

fit.app <- lm(seat.change ~ approval, data = midterms) fit.app</pre>

##

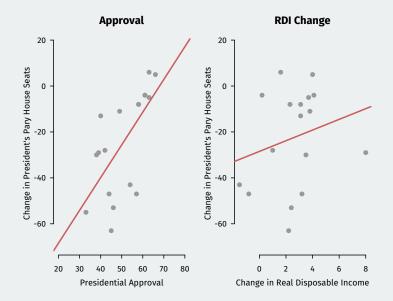
```
## Call:
## lm(formula = seat.change ~ approval, data = midterms)
##
## Coefficients:
## (Intercept) approval
## -96.84 1.42
```

fit.rdi <- lm(seat.change ~ rdi.change, data = midterms) fit.rdi</pre>

##

```
## Call:
## lm(formula = seat.change ~ rdi.change, data = midterms)
##
## Coefficients:
## (Intercept) rdi.change
## -28.48 2.33
```

Comparing models



Model fit

- How well does the model "fit the data"?
 - More specifically, how well does the model predict the outcome variable in the data?
- **Coefficient of determination** or R^2 ("R-squared"):
 - Prediction error just using the mean of Y: Total sum of squares

$$TSS = \sum_{i=1}^{n} (Y_i - \overline{Y})^2$$

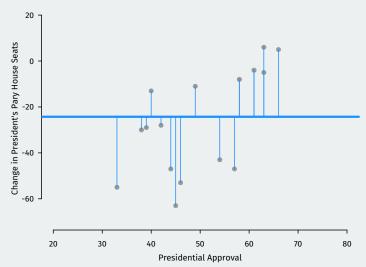
Prediction error with the model: Sum of squared residuals

$$\text{SSR} = \sum_{i=1}^{n} \hat{\epsilon}_i^2$$

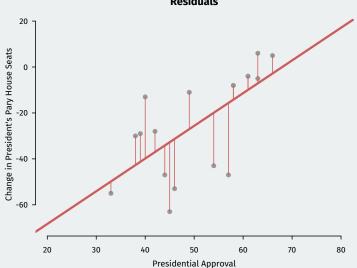
Proportional reduction in error how much of the prediction error is eliminated by using the model:

$$R^2 = \frac{TSS - SSR}{TSS}$$

• Roughly: proportion of the variation in Y_i "explained by" X_i



Deviations from the mean



Residuals

• To access R^2 from the lm() output, first pass it to the summary() function:

fit.app.sum <- summary(fit.app)
fit.app.sum\$r.squared</pre>

[1] 0.431

Compare to the fit using change in income:

fit.rdi.sum <- summary(fit.rdi)
fit.rdi.sum\$r.squared</pre>

[1] 0.0544

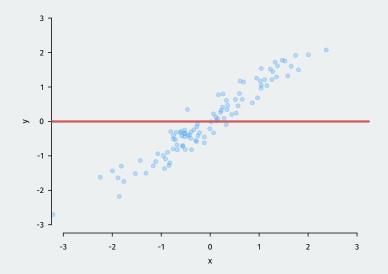
• Which does a better job predicting midterm election outcomes?

- Little hard to see what's happening in that example.
- Let's look at fake variables x and y:

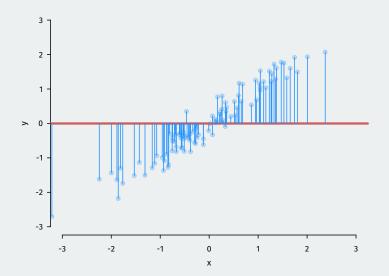
fit.x <- $lm(y \sim x)$

• Very good model fit: $R^2 \approx 0.95$

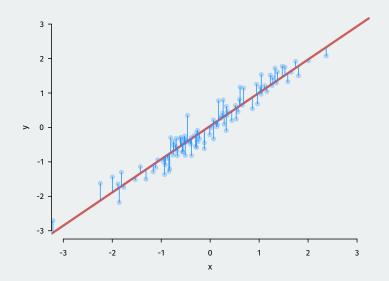
Fake data, better fit



Fake data, better fit

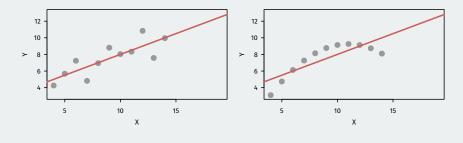


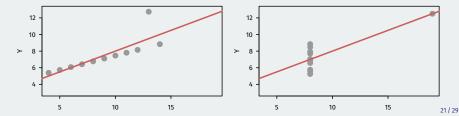
Fake data, better fit



Is R-squared useful?

• Can be very misleading. Each of these samples have the same R^2 even though they are vastly different:





Overfitting

- **In-sample fit**: how well your estimated model helps predict the data used to estimate the model.
 - \triangleright R^2 is a measure of in-sample fit.
- **Out-of-sample fit**: how well your estimated model help predict outcomes outside of the sample used to fit the model.
- **Overfitting**: OLS and other statistical procedures designed to predict in-sample outcomes really well, but may do really poorly out of sample.
 - Example: predicting winner of Democratic presidential primary with gender of the candidate.
 - Until 2016, gender of the canidate was a **perfect** predictor of who wins the primary.
 - Prediction for 2016 based on this: Bernie Sanders as Dem. nominee.
 - Bad out-of-sample prediction due to overfitting!
- Could waste tons of governmental or corporate resources with a bad prediction model!

- Several procedure exist to guard against overfitting.
- **Cross validation** is the most popular:
 - Randomly choose half the sample to set aside (test set)
 - Estimate the coefficients with the remaining half of the units (**training set**)
 - Assess the model fit on the held out test set.
 - Switch the test and training set and repeat, average the results.
- Congrats, you know machine learning/artificial intelligence!

3/ Multiple predictors

• What if we want to predict *Y* as a function of many variables?

$$Y_i = \alpha + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_k X_{ik} + \epsilon_i$$

• Why might we do this?

- Better predictions!
- Better interpretation: β_1 is the effect of X_1 holding all other independent variables constant. (**ceteris paribus**)
- With midterms data:

seat.change_i =
$$\alpha + \beta_1$$
approval_i + β_2 rdi.change_i + ϵ_i

Multiple regression in R

- $\hat{\alpha}$ = -117.2: average seat change president has 0% approval and no change in income levels.
- $\hat{\beta}_1 =$ 1.61: average increase in seat change for additional percentage point of approval, **holding RDI change fixed**
- $\hat{\beta}_2 =$ 4.213: average increase in seat change for each additional percentage point increase of RDI, **holding approval fixed**

Least squares with multiple regression

- How do we estimate the coefficients?
- The same exact way as before: minimize prediction error!
- Residuals (aka prediction error) with multiple predictors:

$$\hat{\epsilon}_i = Y_i - \hat{\alpha} - \hat{\beta}_1 X_{i1} - \hat{\beta}_2 X_{i2}$$

• Find the coefficients that minimizes the sum of the squared residuals:

$$SSR = \sum_{i=1}^{n} \hat{\epsilon}_i^2 = (Y_i - \hat{\alpha} - \hat{\beta}_1 X_{i1} - \hat{\beta}_2 X_{i2})^2$$

Model fit with multiple predictors

- R² mechanically increases when you add a variables to the regression.
 But this could be overfitting!!
- Solution: penalize regression models with more variables.
 - Occam's razor: simpler models are preferred
- Adjusted R^2 : lowers regular R^2 for each additional covariate.
 - If the added covariates doesn't help predict, adjusted R² goes down!

summary(mult.fit)\$adj.r.squared

[1] 0.458

summary(mult.fit)\$r.squared

[1] 0.526

- Next week:
 - How can we use regression for **causal inference**?
 - Allowing for different slopes for different groups of observations.
 - Allowing for non-linear effects!