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1/ Today’s agenda
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Where are we? Where are we going?

• Learned about uncertainty for sample means and sample
difference-in-means.

• What about our regression estimates?

• Final project:
▶ Analyses due tonight.
▶ Template Rmd file uploaded to Canvas.
▶ Final write-up due 12/10
▶ We’ll learn some key concepts for interpreting regression coefficients today.
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2/ Regression review
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Data

• Do political institutions promote economic development?
• Acemoglu, Johnson, and Robinson (2001) look at the relationship between
strength of property rights in a country and GDP.

• Data:

ajr <- foreign::read.dta(”data/ajr.dta”)

Name Description
shortnam three-letter country code
africa indicator for if the country is in Africa
avexpr strength of property rights (protection against expro-

priation)
logpgp95 log GDP per capita
imr95 infant mortality rate
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AJR scatterplot
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Simple linear regression model

• We are going to assume a linear model:

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝜀𝑖

• Data:

▶ Dependent variable: 𝑌𝑖▶ Independent variable: 𝑋𝑖

• Population parameters:

▶ Population intercept: 𝛽0▶ Population slope: 𝛽1

• Error/disturbance: 𝜖𝑖
▶ Represents all unobserved error factors influencing 𝑌𝑖 other than 𝑋𝑖.
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Least squares

• How do we figure out the best line to draw?
▶ alt question: how do we figure out 𝛽0 and 𝛽1?▶ (𝛽0, 𝛽1): estimated coefficients.▶ 𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖: predicted/fitted value.
▶ 𝜖𝑖 = 𝑌𝑖 − 𝑌: residual.

• Get these estimates by the least squares method.
• Minimize the sum of the squared residuals (SSR):

SSR =
𝑛

∑
𝑖=1

𝜖2𝑖 =
𝑛

∑
𝑖=1

(𝑌𝑖 − 𝛽0 − 𝛽1𝑋𝑖)2
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3/ OLS as a estimator
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Estimators

• Remember: least squares is an estimator—it’s a machine that we plug data
into and we get out estimates.

OLS

Sample 1: {(𝑌1, 𝑋1), … , (𝑌𝑛, 𝑋𝑛)} (𝛽0, 𝛽1)1
Sample 2: {(𝑌1, 𝑋1), … , (𝑌𝑛, 𝑋𝑛)} (𝛽0, 𝛽1)2

⋮ ⋮
Sample 𝑘 − 1: {(𝑌1, 𝑋1), … , (𝑌𝑛, 𝑋𝑛)} (𝛽0, 𝛽1)𝑘−1

Sample 𝑘: {(𝑌1, 𝑋1), … , (𝑌𝑛, 𝑋𝑛)} (𝛽0, 𝛽1)𝑘

• Just like the sample mean, sample difference in means, or the sample
variance

• It has a sampling distribution, with a sampling variance/standard error, etc.
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Simulation procedure

• Let’s take a simulation approach to demonstrate:
▶ Pretend that the AJR data represents the population of interest
▶ See how the line varies from sample to sample

1. Draw a random sample of size 𝑛 = 30 with replacement using sample()
2. Use lm() to calculate the OLS estimates of the slope and intercept
3. Plot the estimated regression line
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Population regression
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Randomly sample from AJR
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Randomly sample from AJR
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Randomly sample from AJR
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Randomly sample from AJR
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Randomly sample from AJR
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Randomly sample from AJR
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Randomly sample from AJR
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Sampling distribution of OLS

• You can see that the estimated slopes and intercepts vary from sample to
sample, but that the “average” of the lines looks about right.

Sampling distribution of intercepts

β̂0

Fr
eq
ue
nc
y

1 2 3 4 5 6 7

0

50

100

150

200

250

300

Sampling distribution of slopes

β̂1

Fr
eq
ue
nc
y

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0

50

100

150

200

250

21 / 33



Assumptions

• Key assumptions of regression:
1. Exogeneity: mean of 𝜖𝑖 does not depend on 𝑋𝑖:

𝔼(𝜖𝑖|𝑋𝑖) = 𝔼(𝜖𝑖) = 0
2. Homoskedasticity: variance of 𝜖𝑖 does not depend on 𝑋𝑖:

𝕍(𝜖𝑖|𝑋𝑖) = 𝕍(𝜖𝑖) = 𝜎 2

• Exogeneity violated if there are unmeasured confounders between 𝑌𝑖 and
𝑋𝑖.▶ i.e., things in 𝜖𝑖 that are related to 𝑋𝑖

• Homoskedasticity violated when spead of 𝑌𝑖 depends on 𝑋𝑖.▶ easy fix for this, but beyond the scope of this class.
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Properties of OLS

• 𝛽0 and 𝛽1 are random variables
▶ Are they on average equal to the true values (bias)?
▶ How spread out are they around their center (variance)?

• We can also estimate their standard error: ŜE(𝛽1)▶ Our best guess at the spread of the estimator
• Under exogeneity and homoskedasticity,

▶ 𝛽0 and 𝛽1 are unbiased▶ Estimated standard errors are unbiased
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Tests and CIs for regression

• 95% confidence intervals:
▶ 𝛽0 ± 1.96 × ŜE(𝛽0)
▶ 𝛽1 ± 1.96 × ŜE(𝛽1)

• Hypothesis tests:
▶ Null hypothesis: 𝐻0 ∶ 𝛽1 = 𝛽 ∗

1
▶ Test statistic: 𝛽1−𝛽 ∗

1
ŜE(𝛽1)

∼ 𝑁(0, 1)
▶ Usual test is of 𝛽1 = 0.
▶ 𝛽1 is statistically significant if its p-value from this test is below some

threshold (usually 0.05)
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ajr.reg <- lm(logpgp95 ~ avexpr, data = ajr)
summary(ajr.reg)

##
## Call:
## lm(formula = logpgp95 ~ avexpr, data = ajr)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.902 -0.316 0.138 0.422 1.441
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.6261 0.3006 15.4 <2e-16 ***
## avexpr 0.5319 0.0406 13.1 <2e-16 ***
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.718 on 109 degrees of freedom
## (52 observations deleted due to missingness)
## Multiple R-squared: 0.611, Adjusted R-squared: 0.608
## F-statistic: 171 on 1 and 109 DF, p-value: <2e-16
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Multiple regression

• Correlation doesn’t imply causation

• Omitted variables⇝ violation of exogeneity

• You can adjust for multiple confounding variables:

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖1 + 𝛽2𝑋𝑖2 + ⋯ + 𝛽𝑝𝑋𝑖𝑝 + 𝜖𝑖

• Interpretation of 𝛽𝑗 : an increase in the outcome associated with a one-unit
increase in 𝑋𝑖𝑗 when other variables don’t change their values

• Inference:

▶ Confidence intervals constructed exactly the same for 𝛽𝑗
▶ Hypothesis tests done exactly the same for 𝛽𝑗▶ ⇝ interpret p-values the same as before.
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ajr.reg <- lm(logpgp95 ~ avexpr + africa + imr95, data = ajr)
summary(ajr.reg)

##
## Call:
## lm(formula = logpgp95 ~ avexpr + africa + imr95, data = ajr)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.3928 -0.2708 0.0865 0.2749 1.1652
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.01362 0.40445 17.34 < 2e-16 ***
## avexpr 0.28872 0.05046 5.72 0.00000043 ***
## africa -0.02069 0.18622 -0.11 0.91
## imr95 -0.01549 0.00271 -5.71 0.00000045 ***
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.492 on 56 degrees of freedom
## (103 observations deleted due to missingness)
## Multiple R-squared: 0.778, Adjusted R-squared: 0.766
## F-statistic: 65.4 on 3 and 56 DF, p-value: <2e-16 27 / 33



Regression tables

• In papers, you’ll oǒten find regression tables that have several models.
• Each column is a different regression with different predictors or different
samples.

• Standard errors, p-values, sample size, and 𝑅2 may be reported as well.
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AJR regression table
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4/Wrapping up
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Wrapping up

• Main goal of statistical methods: learn about what we don’t know
(population parameters) from what we do know (data).

• Messages to keep in mind moving forward:
▶ A particular sample or result could be due to random chance⇝ use

hypothesis tests and confidence intervals to assess
▶ Be skeptical of causal claims unless groups are really comparable.
▶ Think carefully about sampling biases when people make claims.
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Want more?

• More Gov classes in quantitative methods:
▶ Gov 61: more advanced methods for thesis writers
▶ Gov 1000/2000: first methods class for PhD students.
▶ Gov 1005 (Data)/Gov 1006 (Models): lots of tools for data science.
▶ Classes by Prof. James Snyder have data analysis components.

• Outside Gov:
▶ Stat 110/111: deeper into statistical theory.
▶ Data Science 1/2: more focus on computation and prediction.

• Outside classes:
▶ Work with faculty on research projects!
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Thanks!

Thanks for a really fun and engaging semester! Good luck with your final projects!
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