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1/ Today’s agenda
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Where are we? Where are going?

• Learned the basics of probability.
▶ Addition rule
▶ Conditional probability
▶ Independence

• Now, random variables and probability distributions.
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2/Why probability?
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Learning about populations

Population Sample

probability

inference

• Probability: formalize the uncertainty about how our data came to be.
• Inference: learning about the population from a set of data.
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Why probability?

• Statistical inference is a thought experiment.
• Probability is the logic of these though experiments.

• Suppose men and women were paid the same on average, but there was
chance variation from person to person.

▶ How likely is the observed wage gap in this hypothetical world?
▶ What kinds of wage gaps would we expect to observe in this hypothetical

world?
• Probability to the rescue!
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The lady tasting tea

• Thought experiment posed by statistician R.A. Fisher.
▶ “a genius who almost single-handedly created the foundations for modern

statistical science” (also a racist/eugenicist)
• Setup of thought experiment:
Your friend asks you to grab a tea with milk for her before meeting up
and she says that she prefers tea poured before the milk. You stop by
Tealuxe and ask for a tea with milk. When you bring it to her, he com-
plains that it was prepared milk-first.

• You are skeptical that she can really tell the difference, so you devise a test:
▶ Prepare 8 cups of tea, 4 milk-first, 4 tea-first
▶ Present cups to friend in a random order
▶ Ask friend to pick which 4 of the 8 were milk-first.
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Assuming we know the truth

• Friend picks out all 4 milk-first cups correctly!
• Statistical thought experiment: how oǒten would she get all 4 correct if she
were guessing randomly?

▶ Only one way to choose all 4 correct cups.
▶ But 70 ways of choosing 4 cups among 8.
▶ Choosing at random ≈ picking each of these 70 with equal probability.

• Chances of guessing all 4 correct is 1
70 ≈ 0.014 or 1.4%.

• ⇝ the guessing hypothesis might be implausible.

• You’ve done your first hypothesis test and calculated your first p-value!
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3/ Random variables and
probabilities distributions
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What are random variables?

• Probability so far is about “events” and “outcomes”
• What’s the connection to our data?

Random Variable
A random variable (r.v.) assigns a numeric value to each outcome in the sample
space.

• r.v.s are numeric representation of uncertain events⇝ we can use math!
• We’ll think about each observation in our data frame as a r.v.
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Examples

• Random trial: Tossing a coin 3 times
▶ one possible outcome: 𝐻𝑇𝐻
▶ but not a random variable because it’s not numeric.

• Random variable: 𝑋 = number of heads in the five tosses
▶ 𝐻𝑇𝐻⇝ 𝑋 = 2

• Same space might have many different r.v.s
▶ 𝑌 = number of tails
▶ 𝑍 = 1 if any of the 3 flips are heads.
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Types of random variables

• Discrete r.v.: 𝑋 can take on a finite (or countably infinite) number of values.
▶ Number of heads in 5 coin flips
▶ Trump approval or not.
▶ Number of battle deaths in a civil war

• Continuous r.v.: 𝑋 can take on any real value (usually within an interval).
▶ GDP per capita (average income) in a country.
▶ Share of population that approves of Trump.
▶ Amount of time spent on a website.
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Randomness and probability distributions

• How are r.v.s random?
▶ Uncertainty over events/outcomes⇝ uncertainty over value of 𝑋.
▶ We’ll use probability to formalize this uncertainty.

• Easiest way to think about the randomness and distributions: sampling.
• Randomly select 1 person from US registered voters.
• Let 𝑋 = 1 if the person supports Trump, 𝑋 = 0 otherwise.

▶ ℙ(𝑋 = 1) = the share of people that support Trump in the population.
▶ ℙ(𝑋 = 0) = the share of people that don’t support Trump in the

population.
• Let 𝑌 be the age of the respondent.

▶ ℙ(𝑌 > 65) is the share of registered voters over 65.
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Probability distribution

• The probability distribution of a r.v. gives the probability of all of the
possible values of the r.v.

• Cumulative distribution function: 𝐹(𝑥) = ℙ(𝑋 ≤ 𝑥)
▶ Can recover probability of any interval.
▶ ℙ(𝑋 > 𝑥) = 1 − 𝐹(𝑥)
▶ ℙ(𝑎 < 𝑋 ≤ 𝑏) = 𝐹(𝑏) − 𝐹(𝑎)
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Probability mass functions
• For discrete r.v.s, probability mass function gives probability of each
possible value, 𝑓(𝑥) = ℙ(𝑋 = 𝑥).

▶ Like a bar plot for the population shares of each value.

0 1

x

f(
x)

0.0

0.2

0.4

0.6

0.8

1.0

16 / 34



Probability density functions
• For continuous r.v.s, probability density function gives density of probability
around a given point.

▶ Like a “infinite” histogram⇝ so many bins that things look smooth.
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Inducing probabilities

Ω
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• Let 𝑋 be the number of heads in two coin flips.

outcome prob. 𝑋
TT 1/4 0
HT 1/4 1
TH 1/4 1
HH 1/4 2

𝑥 ℙ(𝑋 = 𝑥)
0 1/4
1 1/2
2 1/4
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4/ Summarizing distributions
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How can we summarize distributions?

• Probability distributions describe the uncertainty about r.v.s.
▶ Problem: can involve complex formulas that are hard to work with.

• In this class, we’ll focus on two summaries of the probability distribution.

1. Central tendency: where the center of the distribution is.
▶ We’ll focus on the mean/expectation.

2. Spread: how spread out the distribution is around the center.
▶ We’ll focus on the variance/standard deviation.

• With real data, we are going to try and infer these values from data on a r.v.
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Expectation

• Natural measure of central tendency is the expected value (a/k/a the
expectation or mean) of 𝑋.

• If 𝑋 is age of randomly selected registered voter, then mean of 𝑋 is the
average age in the population of registered voters.

• Write it as 𝔼(𝑋) or sometimes just 𝜇 (mu).
• For discrete 𝑋 ∈ {𝑥1, 𝑥2, … , 𝑥𝑘} with 𝑘 levels:

𝔼[𝑋] =
𝑘

∑
𝑗=1

𝑥𝑗ℙ(𝑋 = 𝑥𝑗)

▶ Weighted average of the values of the r.v. weighted by the probability of each
value occurring.
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Properties of the expected value

Let 𝑋 and 𝑌 be r.v.s and 𝑎 and 𝑏 be constants.

1. 𝔼(𝑎) = 𝑎
2. 𝔼(𝑎𝑋) = 𝑎𝔼(𝑋)
3. 𝔼(𝑎𝑋 + 𝑏) = 𝑎𝔼(𝑋) + 𝑏
4. 𝔼(𝑎𝑋 + 𝑏𝑌) = 𝑎𝔼(𝑋) + 𝑏𝔼(𝑌)
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Variance

• The variance measures the spread of the distribution:

𝕍[𝑋] = 𝔼[(𝑋 − 𝔼[𝑋])2]
• If 𝑋 is the age of a randomly selected registered voter, 𝕍[𝑋] is the
variance of age in the population.

• Weighted average of the squared distances from the mean.
▶ Larger deviations (+ or −)⇝ higher variance

• The standard deviation is the (positive) square root of the variance:
𝜎𝑋 = √𝕍[𝑋].
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Properties of variances

1. If 𝑏 is a constant, then 𝕍[𝑏] = 0.
2. If 𝑎 and 𝑏 are constants, 𝕍[𝑎𝑋 + 𝑏] = 𝑎2𝕍[𝑋].
3. In general, 𝕍[𝑋 + 𝑌] ≠ 𝕍[𝑋] + 𝕍[𝑌].
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5/ Famous distributions
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Probability distributions

• Like last slide, we can infer probability distributions from underlying
probability trials.

• Easier: rely on common distributions that are well-studied.
▶ Common distributions have underlying probability trials that we oǒten just

say in words.
• Three types of r.v.s we’ll think about in this class:

▶ Bernoulli, binomial, and normal.
▶ Others in the book, but we won’t focus on them.
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Bernoulli r.v.

• Bernoulli r.v.: 𝑋 can take on one of two possible values (usually 0 and 1).
▶ a/k/a binary r.v. or dummy r.v.
▶ Discrete random variable.

• Example: Trump approval for a respondent:
▶ Ω = {approve, don’t approve}.
▶ Random variable converts this into a number:

𝑋 = {
1 if approve
0 if don’t approve

• Probability distribution of Bernoulli r.v. summarized by the probability of
𝑋 = 1.

▶ Why? ℙ(𝑋 = 0) = 1 − ℙ(𝑋 = 1)
▶ We use 𝑝 = ℙ(𝑋 = 1) be the probability of “success” (𝑋 = 1).
▶ Infinite number of possible Bernoulli r.v.s: one for each value of 𝑝.
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Binomial distribution
• Binomial r.v.: 𝑋 takes on any integer between 0 and 𝑛.

▶ Number of heads in 𝑛 independent coin flips with probability 𝑝 of heads.
▶ “Binomial with 𝑛 trials and probability of success 𝑝”

• Example:

▶ Randomly select 10 people from the population, 𝑋 = how many of them
support Trump?

▶ If the population support for Trump is 𝑝, then 𝑋 is binomial with 𝑛 = 10
trial and probability of success 𝑝.

• Probability mass function: x

ℙ(𝑋 = 𝑥) = (𝑛
𝑥)𝑝𝑥(1 − 𝑝)𝑛−𝑥 where (𝑛

𝑘) = 𝑛!/(𝑘!(𝑛 − 𝑘)!)

• Equivalent to the sum of 𝑛 Bernoulli r.v.s each with probability 𝑝.
• ⇝ 𝔼[𝑋] = 𝑛𝑝 and 𝕍[𝑋] = 𝑛𝑝(1 − 𝑝)
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Binomial distribution (n=10,p=0.5)
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Binomials in R

• Binomial pmf ℙ(𝑋 = 𝑥) in R (size = 𝑛 and prob = 𝑝):
dbinom(5, size = 10, prob = 0.5)

## [1] 0.246

• Binomial cdf ℙ(𝑋 ≤ 𝑥) in R:
pbinom(5, size = 10, prob = 0.5)

## [1] 0.623

• We can simulate data from this distribution using rbinom():

rbinom(n = 10, size = 10, prob = 0.5)

## [1] 5 3 4 10 5 5 2 6 3 6
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Example

• Suppose we knew (magically) that Donald Trump had a population approval
rating of 42%.

▶ Equivalent, 0.42 of the population approves of Trump.
• Draw a random sample of 1000 and 𝑋 = number of respondents that
support Trump.

▶ 𝑋 is Binomial with size 1000 and probability of success 0.42
• What if drew lots of samples of size 1000? What would the distribution look
like?

▶ ⇝ what if drew a lot of samples of 𝑋?

31 / 34



Simulations
sims <- 10000

draws <- rbinom(sims, size = 1000, prob = 0.42)
length(draws)

## [1] 10000

mean(draws)

## [1] 420

## convert to sample proportions
head(draws/1000)

## [1] 0.465 0.439 0.454 0.451 0.404 0.413

hist(draws, freq = FALSE, xlim = c(0, 1000), ylim = c(0, 0.04),
xlab = ”Draws of Number of Trump Supporters”)

abline(v = 420, col = ”indianred”, lwd = 2)
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Histogram of draws
Histogram of draws
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Next time

• Properties of sums and means in large samples.
• Normal distribution and the central limit theorem!
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