Gov 50: 2. Introduction to R and R Markdown

Matthew Blackwell

Harvard University

Fall 2018

- 1. Today's agenda
- 2. R logistics
- 3. Measuring turnout

1/ Today's agenda

· What you've been doing:

- · What you've been doing:
 - ► Reading QSS, Ch 1

- What you've been doing:
 - ► Reading QSS, Ch 1
 - Creating DataCamp, rstudio.cloud, and Perusall accounts

- What you've been doing:
 - Reading QSS, Ch 1
 - Creating DataCamp, rstudio.cloud, and Perusall accounts
- DataCamp Assignment 1:

- What you've been doing:
 - Reading QSS, Ch 1
 - Creating DataCamp, rstudio.cloud, and Perusall accounts
- DataCamp Assignment 1:
 - On Canvas/DataCamp now.

- What you've been doing:
 - Reading QSS, Ch 1
 - Creating DataCamp, rstudio.cloud, and Perusall accounts
- DataCamp Assignment 1:
 - On Canvas/DataCamp now.
 - Due Tues, 9/11 at 11:59 ET

- · What you've been doing:
 - Reading QSS, Ch 1
 - Creating DataCamp, rstudio.cloud, and Perusall accounts
- DataCamp Assignment 1:
 - On Canvas/DataCamp now.
 - ▶ Due Tues, 9/11 at 11:59 ET
 - DC Assignment 2 due on Thurs, 9/13.

- What you've been doing:
 - Reading QSS, Ch 1
 - Creating DataCamp, rstudio.cloud, and Perusall accounts
- DataCamp Assignment 1:
 - On Canvas/DataCamp now.
 - ▶ Due Tues, 9/11 at 11:59 ET
 - DC Assignment 2 due on Thurs, 9/13.
 - Get started early!

- What you've been doing:
 - Reading QSS, Ch 1
 - Creating DataCamp, rstudio.cloud, and Perusall accounts
- DataCamp Assignment 1:
 - On Canvas/DataCamp now.
 - Due Tues, 9/11 at 11:59 ET
 - ▶ DC Assignment 2 due on Thurs, 9/13.
 - Get started early!
- Prerequisites.

- What you've been doing:
 - Reading QSS, Ch 1
 - Creating DataCamp, rstudio.cloud, and Perusall accounts
- DataCamp Assignment 1:
 - On Canvas/DataCamp now.
 - ▶ Due Tues, 9/11 at 11:59 ET
 - ► DC Assignment 2 due on Thurs, 9/13.
 - Get started early!
- Prerequisites.
- · Any other questions?

Where are we going?

• Today:

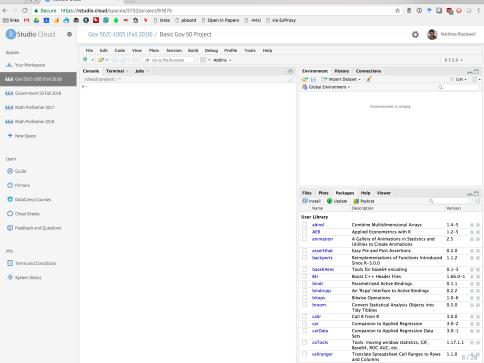
Where are we going?

- · Today:
 - Introduction to R, RStudio, and DataCamp

Where are we going?

- · Today:
 - Introduction to R, RStudio, and DataCamp
 - Quick exercise on measuring turnout to get familiar with R

2/ R logistics


rstudio.cloud (we'll set you with accounts):

- rstudio.cloud (we'll set you with accounts):
 - Online version of R pre-loaded with all the goodies.

- rstudio.cloud (we'll set you with accounts):
 - Online version of R pre-loaded with all the goodies.
 - Minimize the headaches of installation/packages/etc.

- rstudio.cloud (we'll set you with accounts):
 - Online version of R pre-loaded with all the goodies.
 - Minimize the headaches of installation/packages/etc.
 - Allows us to distribute HW code/data/templates to you very easily.

- rstudio.cloud (we'll set you with accounts):
 - Online version of R pre-loaded with all the goodies.
 - Minimize the headaches of installation/packages/etc.
 - Allows us to distribute HW code/data/templates to you very easily.
- You're free to download RStudio (a program to use R) on your own machine to test it.

• For HWs, we'll have you write up your answers in a file called an "R markdown" file.

- For HWs, we'll have you write up your answers in a file called an "R markdown" file.
- Essentially a mix of text answers and your code to analyze data/produce graph.

- For HWs, we'll have you write up your answers in a file called an "R markdown" file.
- Essentially a mix of text answers and your code to analyze data/produce graph.
- · Benefits:

- For HWs, we'll have you write up your answers in a file called an "R markdown" file.
- Essentially a mix of text answers and your code to analyze data/produce graph.
- · Benefits:
 - ▶ Reproducible, automatic report creation, automation.

- For HWs, we'll have you write up your answers in a file called an "R markdown" file.
- Essentially a mix of text answers and your code to analyze data/produce graph.
- Benefits:
 - Reproducible, automatic report creation, automation.
- · Downsides:

- For HWs, we'll have you write up your answers in a file called an "R markdown" file.
- Essentially a mix of text answers and your code to analyze data/produce graph.
- · Benefits:
 - Reproducible, automatic report creation, automation.
- · Downsides:
 - Might be unfamiliar, but we'll provide resources online and in section!

- For HWs, we'll have you write up your answers in a file called an "R markdown" file.
- Essentially a mix of text answers and your code to analyze data/produce graph.
- · Benefits:
 - Reproducible, automatic report creation, automation.
- · Downsides:
 - Might be unfamiliar, but we'll provide resources online and in section!
- I write my slides in R markdown and I'll post the source so you can see what it's like.

```
🕮 gov50-test.Rmd 🗵
                                                                                                                                                                                                                                                                                         -0
⟨□□⟩ | 2□ | □ | △□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ | 4□□ 
                                                                                                                                                                 🚾 Insert 🕶 🔐 🕀 🕒 Run 🕶 🗲 🖛
         1 - ---
         2
                     title: "Gov 50 Test"
         3
                    author: "Matthew Blackwell"
                     date: "8/31/2017"
         4
         5
                     output: pdf_document
         6
         7
                       ```{r setup, include=FALSE}
 8 -
 9
 knitr::opts_chunk$set(echo = TRUE)
 10
 11
 12 - ## R Markdown
 13
 14
 This is an R Markdown document. Markdown is a simple formatting syntax
 for authoring HTML, PDF, and MS Word documents. For more details on using
 R Markdown see http://rmarkdown.rstudio.com.
 15
 16
 When you click the **Knit** button a document will be generated that
 includes both content as well as the output of any embedded R code chunks
 within the document. You can embed an R code chunk like this:
 17
 18 -
                      ```{r cars}
                                                                                                                                                                                                                                                                         ## ¥ ▶
     19
                      summary(cars)
     20
                                                                                                                                                                                                                                                                                                    10 / 28
```

Gov 50 Test

Matthew Blackwell 8/31/2017

R. Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the **Knit** button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

summary(cars)

```
speed
                    dist
       : 4.0
               Min.
                      : 2.00
1st Qu.:12.0
               1st Qu.: 26.00
Median:15.0
               Median: 36.00
       :15.4
                      : 42.98
Mean
               Mean
3rd Qu.:19.0
               3rd Qu.: 56.00
       :25.0
Max.
                      :120.00
               Max.
```

Including Plots

You can also embed plots, for example:

Break to show Rstudio/DataCamp

3/ Measuring turnout

Measuring turnout

· Question: How do you measure turnout rates?

Measuring turnout

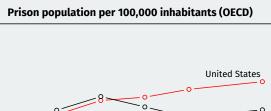
- · Question: How do you measure turnout rates?
- · Numerator: Total votes cast

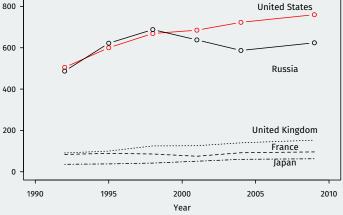
- · Question: How do you measure turnout rates?
- Numerator: Total votes cast
- · Denominator:

- · Question: How do you measure turnout rates?
- · Numerator: Total votes cast
- · Denominator:
 - 1. Registered voters

- · Question: How do you measure turnout rates?
- · Numerator: Total votes cast
- · Denominator:
 - 1. Registered voters
 - 2. **VAP** (voting-age population) form Census

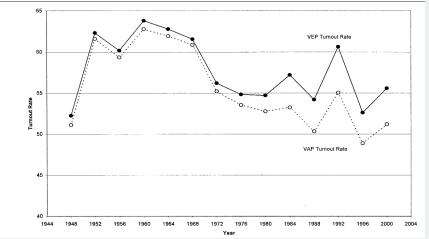
- Question: How do you measure turnout rates?
- · Numerator: Total votes cast
- · Denominator:
 - 1. Registered voters
 - 2. **VAP** (voting-age population) form Census
 - 3. **VEP** (voting-eligible population)


- · Question: How do you measure turnout rates?
- · Numerator: Total votes cast
- · Denominator:
 - 1. Registered voters
 - 2. VAP (voting-age population) form Census
 - 3. **VEP** (voting-eligible population)
- **VEP** = VAP + overseas voters − ineligible voters


- · Question: How do you measure turnout rates?
- · Numerator: Total votes cast
- · Denominator:
 - 1. Registered voters
 - 2. VAP (voting-age population) form Census
 - 3. **VEP** (voting-eligible population)
- **VEP** = VAP + overseas voters ineligible voters
 - overseas voters: military personnel and civilians

- · Question: How do you measure turnout rates?
- · Numerator: Total votes cast
- · Denominator:
 - 1. Registered voters
 - 2. **VAP** (voting-age population) form Census
 - 3. **VEP** (voting-eligible population)
- VEP = VAP + overseas voters ineligible voters
 - overseas voters: military personnel and civilians
 - ineligible voters: non-citizens, disenfranchised felons, those who failed to meet states' residency requirement, etc.

Growing Prison Populations


1000

VAP and VEP are different

FIGURE 1. National VAP and VEP Presidential Turnout Rates, 1948-2000

McDonald and Popkin (2001) American Political Science Review

· Measuring individual turnout:

- · Measuring individual turnout:
 - voter file: registered voters only

- · Measuring individual turnout:
 - voter file: registered voters only
 - survey: American National Election Study (ANES)

- · Measuring individual turnout:
 - voter file: registered voters only
 - survey: American National Election Study (ANES)
- · Social desirability bias: "Did you vote?" "....yeah, sure!"

- Measuring individual turnout:
 - voter file: registered voters only
 - survey: American National Election Study (ANES)
- · Social desirability bias: "Did you vote?" "....yeah, sure!"
- Data set: turnout.csv

- · Measuring individual turnout:
 - voter file: registered voters only
 - survey: American National Election Study (ANES)
- · Social desirability bias: "Did you vote?" "....yeah, sure!"
- Data set: turnout.csv

Variables	Description
year	election year
ANES	ANES estimated turnout rate
VEP	Voting Eligible Population (in thousands)
VAP	Voting Age Population (in thousands)
total	total ballots cast for highest office (in thousands)
felons	total ineligible felons (in thousands)
noncitizens	total non-citizens (in thousands)
overseas	total eligible overseas voters (in thousands)
osvoters	total ballots counted by overseas voters (in thousands)

• Load the dataset (there is an easy pull-down menu too):

```
turnout <- read.csv("data/turnout.csv")
class(turnout)</pre>
```

```
## [1] "data.frame"
```

· Load the dataset (there is an easy pull-down menu too):

```
turnout <- read.csv("data/turnout.csv")
class(turnout)</pre>
```

```
## [1] "data.frame"
```

• Every object in **R** belongs to a class: **character**, **numeric**, etc.

· Load the dataset (there is an easy pull-down menu too):

```
turnout <- read.csv("data/turnout.csv")
class(turnout)</pre>
```

```
## [1] "data.frame"
```

- Every object in **R** belongs to a class: character, numeric, etc.
- data.frame is like a matrix with rows (observations) and columns (variables):

· Load the dataset (there is an easy pull-down menu too):

```
turnout <- read.csv("data/turnout.csv")
class(turnout)</pre>
```

```
## [1] "data.frame"
```

- Every object in R belongs to a class: character, numeric, etc.
- data.frame is like a matrix with rows (observations) and columns (variables):

dim(turnout)

```
## [1] 14 9
```

```
turnout[1:3, c("year", "total", "VEP", "VAP", "felons")]
```

```
## year total VEP VAP felons
## 1 1980 86515 159635 164445 802
## 2 1982 67616 160467 166028 960
## 3 1984 92653 167702 173995 1165
```

• Each column of the data.frame is a vector:

turnout\$year

```
## [1] 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998
## [11] 2000 2002 2004 2008
```

• Each column of the data.frame is a vector:

turnout\$year

```
## [1] 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998
## [11] 2000 2002 2004 2008
```

• We can subset the vector using brackets:

• Each column of the data.frame is a vector:

turnout\$year

```
## [1] 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998
## [11] 2000 2002 2004 2008
```

· We can subset the vector using brackets:

turnout\$year[2]

• Each column of the data.frame is a vector:

turnout\$year

```
## [1] 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998
## [11] 2000 2002 2004 2008
```

· We can subset the vector using brackets:

turnout\$year[2]

```
## [1] 1982
```

Each column of the data.frame is a vector:

turnout\$year

```
## [1] 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998
## [11] 2000 2002 2004 2008
```

· We can subset the vector using brackets:

turnout\$year[2]

```
## [1] 1982
```

turnout\$year[2:4]

Each column of the data.frame is a vector:

turnout\$year

```
## [1] 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998
## [11] 2000 2002 2004 2008
```

· We can subset the vector using brackets:

turnout\$year[2]

```
## [1] 1982
```

turnout\$year[2:4]

```
## [1] 1982 1984 1986
```

Create a vector using c() for "concatenate":

Create a vector using c() for "concatenate":

```
c(2,3,4)
```

```
## [1] 2 3 4
```

• Create a vector using c() for "concatenate":

```
c(2,3,4)
```

```
## [1] 2 3 4
```

· We can save vectors with new names to keep track of things:

Create a vector using c() for "concatenate":

```
c(2,3,4)
```

```
## [1] 2 3 4
```

We can save vectors with new names to keep track of things:

```
eighties <- turnout$year[1:5]
eighties
```

```
## [1] 1980 1982 1984 1986 1988
```

Create a vector using c() for "concatenate":

```
c(2,3,4)
```

```
## [1] 2 3 4
```

We can save vectors with new names to keep track of things:

```
eighties <- turnout$year[1:5]
eighties</pre>
```

```
## [1] 1980 1982 1984 1986 1988
```

· We can also do basic arithmetic on vectors:

Create a vector using c() for "concatenate":

```
c(2,3,4)
```

```
## [1] 2 3 4
```

We can save vectors with new names to keep track of things:

```
eighties <- turnout$year[1:5]
eighties</pre>
```

```
## [1] 1980 1982 1984 1986 1988
```

We can also do basic arithmetic on vectors:

```
eighties + 10
```

```
## [1] 1990 1992 1994 1996 1998
```

• total votes / (VAP + overseas voters) × 100:

total votes / (VAP + overseas voters) × 100:

```
## [1] 52.0 40.2 52.5 36.1 49.7 35.9 54.0 38.0 47.5 34.8 ## [11] 49.3 35.8 54.5 55.7
```

total votes / (VAP + overseas voters) × 100:

```
VAPtr <- turnout$total /
    (turnout$VAP + turnout$overseas) * 100
VAPtr
```

```
## [1] 52.0 40.2 52.5 36.1 49.7 35.9 54.0 38.0 47.5 34.8
## [11] 49.3 35.8 54.5 55.7
```

· Add informative labels:

total votes / (VAP + overseas voters) × 100:

```
## [1] 52.0 40.2 52.5 36.1 49.7 35.9 54.0 38.0 47.5 34.8
## [11] 49.3 35.8 54.5 55.7
```

Add informative labels:
 names(VAPtr) <- turnout\$year

```
VAPtr

## 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000

## 52.0 40.2 52.5 36.1 49.7 35.9 54.0 38.0 47.5 34.8 49.3

## 2002 2004 2008

## 35.8 54.5 55.7
```

total votes / VEP × 100:

VEP-based turnout

• total votes / VEP \times 100:

```
VEPtr <- turnout$total / turnout$VEP * 100
names(VEPtr) <- turnout$year
```

VEP-based turnout

• total votes / VEP \times 100:

```
VEPtr <- turnout$total / turnout$VEP * 100
names(VEPtr) <- turnout$year</pre>
```

Difference between VEP and VAP-based turnout rates:

VEP-based turnout

total votes / VEP × 100:

```
VEPtr <- turnout$total / turnout$VEP * 100
names(VEPtr) <- turnout$year</pre>
```

Difference between VEP and VAP-based turnout rates:

```
diff <- VEPtr - VAPtr
names(diff) <- turnout$year
diff</pre>
```

```
## 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000
## 2.16 1.89 2.71 2.06 3.05 2.48 4.07 3.10 4.12 3.26 4.88
## 2002 2004 2008
## 3.68 5.55 5.88
```

Percent change vs. percentage point change

Percentage-point change:

new turnout rate(%) — base turnout rate(%)

Percent change vs. percentage point change

· Percentage-point change:

new turnout rate(
$$\%$$
) — base turnout rate($\%$)

· Percentage change:

$$\frac{\text{new turnout rate} - \text{base turnout rate}}{\text{base turnout rate}} \times 100$$

Percent change vs. percentage point change

Percentage-point change:

VEPtr - VAPtr) / VAPtr * 100

new turnout rate(
$$\%$$
) — base turnout rate($\%$)

· Percentage change:

$$\frac{\text{new turnout rate} - \text{base turnout rate}}{\text{base turnout rate}} \times 100$$

```
##
   1980
         1982 1984
                    1986
                         1988
                               1990
                                     1992 1994
                                                1996
   4.14
        4.70 5.16 5.72 6.13 6.90
                                    7.54 8.14 8.68
##
   1998 2000 2002 2004 2008
##
   9.36 9.89 10.28 10.18 10.56
##
```

Self-reported vs VAP & VEP turnout

Comparison between VAP and ANES:

```
diffVAP <- turnout$ANES - VAPtr
summary(diffVAP)</pre>
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 11.1 18.2 20.6 20.3 22.4 26.2
```

Self-reported vs VAP & VEP turnout

Comparison between VAP and ANES:

```
diffVAP <- turnout$ANES - VAPtr
summary(diffVAP)</pre>
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 11.1 18.2 20.6 20.3 22.4 26.2
```

· Comparison between VEP and ANES:

```
diffVEP <- turnout$ANES - VEPtr
summary(diffVEP)</pre>
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 8.58 15.27 16.89 16.84 18.53 22.49
```

· Elections in the data:

turnout\$year

```
## [1] 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998
## [11] 2000 2002 2004 2008
```

· Elections in the data:

turnout\$year

```
## [1] 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998
## [11] 2000 2002 2004 2008
```

• Presidential elections: odd entries of vector (1st, 3rd...) plus the last

· Elections in the data:

turnout\$year

```
## [1] 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998
## [11] 2000 2002 2004 2008
```

• Presidential elections: odd entries of vector (1st, 3rd...) plus the last

```
pres <- c(1, 3, 5, 7, 9, 11, 13, 14)
mids <- c(2, 4, 6, 8, 10, 12)
```

· Elections in the data:

turnout\$year

```
## [1] 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998
## [11] 2000 2002 2004 2008
```

· Presidential elections: odd entries of vector (1st, 3rd...) plus the last

```
pres <- c(1, 3, 5, 7, 9, 11, 13, 14)
mids <- c(2, 4, 6, 8, 10, 12)
```

turnout\$year[pres]

```
## [1] 1980 1984 1988 1992 1996 2000 2004 2008
```

· Elections in the data:

turnout\$year

```
## [1] 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998
## [11] 2000 2002 2004 2008
```

• Presidential elections: odd entries of vector (1st, 3rd...) plus the last

```
pres <- c(1, 3, 5, 7, 9, 11, 13, 14)
mids <- c(2, 4, 6, 8, 10, 12)
```

turnout\$year[pres]

```
## [1] 1980 1984 1988 1992 1996 2000 2004 2008
```

turnout\$year[mids]

```
## [1] 1982 1986 1990 1994 1998 2002
```

```
pVEPtr <- VEPtr[pres]
names(pVEPtr) <- turnout$year[pres]
pVEPtr</pre>
```

```
## 1980 1984 1988 1992 1996 2000 2004 2008
## 54.2 55.2 52.8 58.1 51.7 54.2 60.1 61.6
```

```
pVEPtr <- VEPtr[pres]
names(pVEPtr) <- turnout$year[pres]
pVEPtr</pre>
```

```
## 1980 1984 1988 1992 1996 2000 2004 2008
## 54.2 55.2 52.8 58.1 51.7 54.2 60.1 61.6
```

· Midterm elections:

```
pVEPtr <- VEPtr[pres]
names(pVEPtr) <- turnout$year[pres]
pVEPtr</pre>
```

```
## 1980 1984 1988 1992 1996 2000 2004 2008
## 54.2 55.2 52.8 58.1 51.7 54.2 60.1 61.6
```

· Midterm elections:

```
mVEPtr <- VEPtr[mids]
names(mVEPtr) <- turnout$year[mids]
mVEPtr</pre>
```

```
## 1982 1986 1990 1994 1998 2002
## 42.1 38.1 38.4 41.1 38.1 39.5
```

• Mean or average of a set of numbers:

• Mean or average of a set of numbers:

$$mean = \frac{sum of the numbers}{how many numbers}$$

• Mean or average of a set of numbers:

$$\mathrm{mean} = \frac{\mathrm{sum\ of\ the\ numbers}}{\mathrm{how\ many\ numbers}}$$

$$\mathrm{mean}(x_1, x_2, x_3) =$$

· Mean or average of a set of numbers:

$$mean = \frac{sum of the numbers}{how many numbers}$$

$$mean(x_1, x_2, x_3) = \frac{x_1 + x_2 + x_3}{3}$$

· Mean or average of a set of numbers:

$$mean = \frac{sum of the numbers}{how many numbers}$$

$$mean(x_1, x_2, x_3) = \frac{x_1 + x_2 + x_3}{3}$$

Average difference between presidential and midterm elections:

mean(pVEPtr) - mean(mVEPtr)

· What to do next?

- · What to do next?
 - Create accounts!

- · What to do next?
 - Create accounts!
 - DataCamp assignments!

- · What to do next?
 - Create accounts!
 - DataCamp assignments!
 - Try loading the data from this lecture and implementing some of the commands.

- · What to do next?
 - Create accounts!
 - DataCamp assignments!
 - Try loading the data from this lecture and implementing some of the commands.
 - ▶ Toy around with Rmd file to see how it works.

- · What to do next?
 - Create accounts!
 - DataCamp assignments!
 - Try loading the data from this lecture and implementing some of the commands.
 - ▶ Toy around with Rmd file to see how it works.
- Next week: Causality.