Gov 50: 2. Introduction to R and R Markdown

Matthew Blackwell

Harvard University

Fall 2018

1. Today's agenda

2. R logistics

3. Measuring turnout

1/ Today's agenda

- What you've been doing:
 - Reading QSS, Ch 1
 - Creating DataCamp, rstudio.cloud, and Perusall accounts
- DataCamp Assignment 1:
 - On Canvas/DataCamp now.
 - Due Tues, 9/11 at 11:59 ET
 - DC Assignment 2 due on Thurs, 9/13.
 - Get started early!
- Prerequisites.
- Any other questions?

- Today:
 - Introduction to R, RStudio, and DataCamp
 - Quick exercise on measuring turnout to get familiar with R

2/ R logistics

- rstudio.cloud (we'll set you with accounts):
 - Online version of R pre-loaded with all the goodies.
 - Minimize the headaches of installation/packages/etc.
 - Allows us to distribute HW code/data/templates to you very easily.
- You're free to download RStudio (a program to use R) on your own machine to test it.

- For HWs, we'll have you write up your answers in a file called an "R markdown" file.
- Essentially a mix of text answers and your code to analyze data/produce graph.
- Benefits:
 - Reproducible, automatic report creation, automation.
- Downsides:
 - Might be unfamiliar, but we'll provide resources online and in section!
- I write my slides in R markdown and I'll post the source so you can see what it's like.

```
💭 qov50-test.Rmd 🛛
                                                                           -0
🕼 🖒 | 🚛 | 🔚 | 🖑 🔍 | 🔏 Knit 👻 💮 🗸
                                           🐮 Insert 🗸 | 🏠 😓 | 📑 Run 🖌 🢁 🖌 🚍
  1 ----
  2
     title: "Gov 50 Test"
  3
     author: "Matthew Blackwell"
     date: "8/31/2017"
  4
  5
     output: pdf_document
  6
     _ _ _
  7
      ```{r setup, include=FALSE}
 8 -
 9
 knitr::opts_chunk$set(echo = TRUE)
 10
 11
 12 - ## R Markdown
 13
 14
 This is an R Markdown document. Markdown is a simple formatting syntax
 for authoring HTML, PDF, and MS Word documents. For more details on using
 R Markdown see <http://rmarkdown.rstudio.com>.
 15
 16
 When you click the **Knit** button a document will be generated that
 includes both content as well as the output of any embedded R code chunks
 within the document. You can embed an R code chunk like this:
 17
 18 -
     ```{r cars}
                                                                       🛞 🔟 🕨
 19
     summary(cars)
 20
                                                                              10 / 28
```

Gov 50 Test Matthew Blackwell 8/31/2017

R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the **Knit** button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

summary(cars)

##	speed	dist			
##	Min. : 4.0	Min. : 2.00			
##	1st Qu.:12.0	1st Qu.: 26.00			
##	Median :15.0	Median : 36.00			
##	Mean :15.4	Mean : 42.98			
##	3rd Qu.:19.0	3rd Qu.: 56.00			
##	Max. :25.0	Max. :120.00			

Including Plots

You can also embed plots, for example:

Break to show Rstudio/DataCamp

3/ Measuring turnout

- · Question: How do you measure turnout rates?
- Numerator: Total votes cast
- Denominator:
 - 1. Registered voters
 - 2. VAP (voting-age population) form Census
 - 3. VEP (voting-eligible population)
- **VEP** = VAP + overseas voters ineligible voters
 - overseas voters: military personnel and civilians
 - ineligible voters: non-citizens, disenfranchised felons, those who failed to meet states' residency requirement, etc.

Growing Prison Populations

VAP and VEP are different

FIGURE 1. National VAP and VEP Presidential Turnout Rates, 1948–2000

McDonald and Popkin (2001) American Political Science Review

Bias in self-reported turnout

- · Measuring individual turnout:
 - voter file: registered voters only
 - survey: American National Election Study (ANES)
- · Social desirability bias: "Did you vote?" "....yeah, sure!"
- Data set: turnout.csv

Variables	Description
year	election year
ANES	ANES estimated turnout rate
VEP	Voting Eligible Population (in thousands)
VAP	Voting Age Population (in thousands)
total	total ballots cast for highest office (in thousands)
felons	total ineligible felons (in thousands)
noncitizens	total non-citizens (in thousands)
overseas	total eligible overseas voters (in thousands)
osvoters	total ballots counted by overseas voters (in thousands)

• Load the dataset (there is an easy pull-down menu too):

turnout <- read.csv("data/turnout.csv")
class(turnout)</pre>

[1] "data.frame"

- Every object in **R** belongs to a class: character, numeric, etc.
- data.frame is like a matrix with rows (observations) and columns (variables):

dim(turnout)

[1] 14 9

turnout[1:3, c("year", "total", "VEP", "VAP", "felons")]

##		year	total	VEP	VAP	felons
##	1	1980	86515	159635	164445	802
##	2	1982	67616	160467	166028	960
##	3	1984	92653	167702	173995	1165

Vectors

• Each column of the data.frame is a vector:

turnout\$year ## [1] 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 ## [11] 2000 2002 2004 2008

• We can subset the vector using brackets:

turnout\$year[2]

[1] 1982

turnout\$year[2:4]

[1] 1982 1984 1986

Creating vetors

Create a vector using c() for "concatenate":

c(2,3,4)

[1] 2 3 4

• We can save vectors with new names to keep track of things:

eighties <- turnout\$year[1:5]
eighties</pre>

[1] 1980 1982 1984 1986 1988

• We can also do basic arithmetic on vectors:

eighties + 10

[1] 1990 1992 1994 1996 1998

VAP-based turnout

total votes / (VAP + overseas voters) × 100:

VAPtr <- turnout\$total /
 (turnout\$VAP + turnout\$overseas) * 100
VAPtr</pre>

[1] 52.0 40.2 52.5 36.1 49.7 35.9 54.0 38.0 47.5 34.8
[11] 49.3 35.8 54.5 55.7

• Add informative labels:

names(VAPtr) <- turnout\$year VAPtr

1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000
52.0 40.2 52.5 36.1 49.7 35.9 54.0 38.0 47.5 34.8 49.3
2002 2004 2008
35.8 54.5 55.7

VEP-based turnout

• total votes / VEP \times 100:

VEPtr <- turnout\$total / turnout\$VEP * 100
names(VEPtr) <- turnout\$year</pre>

· Difference between VEP and VAP-based turnout rates:

diff <- VEPtr - VAPtr	
names(diff) <- turnout\$year	
diff	

1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000
2.16 1.89 2.71 2.06 3.05 2.48 4.07 3.10 4.12 3.26 4.88
2002 2004 2008
3.68 5.55 5.88

Percent change vs. percentage point change

• Percentage-point change:

new turnout rate(%) — base turnout rate(%)

• Percentage change:

new turnout rate — base turnout rate base turnout rate × 100

(VEPtr - VAPtr) / VAPtr * 100										
##	1980	1982	1984	1986	1988	1990	1992	1994	1996	
##	4.14	4.70	5.16	5.72	6.13	6.90	7.54	8.14	8.68	
##	1998	2000	2002	2004	2008					
##	9.36	9.89	10.28	10.18	10.56					

Self-reported vs VAP & VEP turnout

Comparison between VAP and ANES:

diffVAP <- turnout\$ANES - VAPtr summary(diffVAP)										
## ##	Min. 11.1	1st Qu. 18.2	Median 20.6	Mean 3 20.3	rd Qu. 22.4	Max. 26.2				
• C	Comparison between VEP and ANES:									
diffVEP <- turnout\$ANES - VEPtr summary(diffVEP)										
##	Min.	1st Qu.	Median	Mean 3	rd Qu.	Max.				

Presidential vs. midterm elections

• Elections in the data:

turnout\$year

[1] 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998
[11] 2000 2002 2004 2008

• Presidential elections: odd entries of vector (1st, 3rd...) plus the last

pres <- c(1, 3, 5, 7, 9, 11, 13, 14) mids <- c(2, 4, 6, 8, 10, 12)

turnout\$year[pres]

[1] 1980 1984 1988 1992 1996 2000 2004 2008

turnout\$year[mids]

[1] 1982 1986 1990 1994 1998 2002

• Presidential elections:

```
pVEPtr <- VEPtr[pres]
names(pVEPtr) <- turnout$year[pres]
pVEPtr</pre>
```

1980 1984 1988 1992 1996 2000 2004 2008 ## 54.2 55.2 52.8 58.1 51.7 54.2 60.1 61.6

· Midterm elections:

mVEPtr <- VEPtr[mids]
names(mVEPtr) <- turnout\$year[mids]
mVEPtr</pre>

1982 1986 1990 1994 1998 2002
42.1 38.1 38.4 41.1 38.1 39.5

• Mean or average of a set of numbers:

mean = $\frac{\text{sum of the numbers}}{\text{how many numbers}}$ mean(x_1, x_2, x_3) = $\frac{x_1 + x_2 + x_3}{3}$

· Average difference between presidential and midterm elections:

mean(pVEPtr) - mean(mVEPtr)

[1] 16.4

- What to do next?
 - Create accounts!
 - DataCamp assignments!
 - Try loading the data from this lecture and implementing some of the commands.
 - Toy around with Rmd file to see how it works.
- Next week: Causality.