Gov 50: 17. Sums and Means in Large Samples

Matthew Blackwell

Harvard University

Fall 2018

- 1. Today's agenda
- 2. Sample means
- 3. Normal distribution
- 4. Central limit theorem

1/ Today's agenda

• HW 4 due Thursday.

- HW 4 due Thursday.
- Groups have been determined for Harvard College students.

- HW 4 due Thursday.
- Groups have been determined for Harvard College students.
 - Paragraph describing data and research question due 11/21

- HW 4 due Thursday.
- Groups have been determined for Harvard College students.
 - Paragraph describing data and research question due 11/21
- Midterm 2 next Thursday

- HW 4 due Thursday.
- Groups have been determined for Harvard College students.
 - Paragraph describing data and research question due 11/21
- Midterm 2 next Thursday
 - Review session on Tuesday.

• Last time: defined random variables.

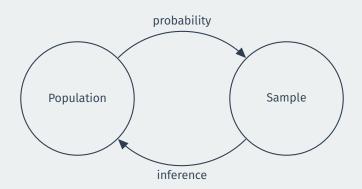
- Last time: defined random variables.
- This time: connect them to data more carefully.

- Last time: defined random variables.
- This time: connect them to data more carefully.
- What happens to our sample means as our samples get big?

- Last time: defined random variables.
- This time: connect them to data more carefully.
- What happens to our sample means as our samples get big?
 - Law of large numbers

- Last time: defined random variables.
- This time: connect them to data more carefully.
- What happens to our sample means as our samples get big?
 - Law of large numbers
 - Central limit theorem

Learning about populations



- **Probability**: formalize the uncertainty about how our data came to be.
- **Inference**: learning about the population from a set of data.

2/ Sample means

Fulton county data

• fulton.csv: data on all registered voters in Fulton County, GA in 1994.

Fulton county data

- fulton.csv: data on all registered voters in Fulton County, GA in 1994.
- Data on the entire population is a census

Fulton county data

- fulton.csv: data on all registered voters in Fulton County, GA in 1994.
- Data on the entire population is a census

Name	Description
turnout	did person vote (1) or not (0) in 1994?
black	is this person black (1) or not (0)?
sex	is this person a woman (1) or not (0)?
age	age
dem	is this person registered as a Democrat (1) or not (0)?
rep	is this person registered as a Republican (1) or not (0)?
urban	registered in a city (1) or not (0)?

Load Fulton county data

```
fulton <- read.csv("data/fulton.csv")
head(fulton)</pre>
```

```
##
    turnout black sex age dem rep urban
## 1
                      19
## 2
                   0 35 0
## 3
                      36 0
                   0 27
                               0
## 4
## 5
                1 1 79
                               0
## 6
                0
                      42
                           1
                               0
                                     0
```

$$X_1, X_2, \dots, X_n$$

• In real data, we will have a set of *n* measurements on a variable:

$$X_1, X_2, \dots, X_n$$

 \triangleright X_1 is the age of the first randomly selected registered voter.

$$X_1, X_2, \dots, X_n$$

- \triangleright X_1 is the age of the first randomly selected registered voter.
- \triangleright X_2 is the age of the second randomly selected registered voter, etc.

$$X_1, X_2, \dots, X_n$$

- \triangleright X_1 is the age of the first randomly selected registered voter.
- X_2 is the age of the second randomly selected registered voter, etc.
- Empirical analyses: sums or means of these *n* measurements

$$X_1, X_2, \dots, X_n$$

- \triangleright X_1 is the age of the first randomly selected registered voter.
- \triangleright X_2 is the age of the second randomly selected registered voter, etc.
- Empirical analyses: sums or means of these n measurements
 - Almost all statistical procedures involve a sum/mean.

$$X_1, X_2, \dots, X_n$$

- \triangleright X_1 is the age of the first randomly selected registered voter.
- \triangleright X_2 is the age of the second randomly selected registered voter, etc.
- Empirical analyses: sums or means of these n measurements
 - Almost all statistical procedures involve a sum/mean.
 - What are the properties of these sums and means?

$$X_1, X_2, \dots, X_n$$

- X_1 is the age of the first randomly selected registered voter.
- \triangleright X_2 is the age of the second randomly selected registered voter, etc.
- Empirical analyses: sums or means of these n measurements
 - Almost all statistical procedures involve a sum/mean.
 - ▶ What are the properties of these sums and means?
 - Can the sample mean of age tell us anything about the population distribution of age?

$$X_1, X_2, \dots, X_n$$

- \triangleright X_1 is the age of the first randomly selected registered voter.
- \triangleright X_2 is the age of the second randomly selected registered voter, etc.
- Empirical analyses: sums or means of these *n* measurements
 - Almost all statistical procedures involve a sum/mean.
 - ▶ What are the properties of these sums and means?
 - Can the sample mean of age tell us anything about the population distribution of age?
- Asymptotics: what can we learn as n gets big?

• If X_1 and X_2 are r.v.s, then $X_1 + X_2$ is a r.v.

- If X_1 and X_2 are r.v.s, then $X_1 + X_2$ is a r.v.
 - lacktriangle Has a mean $\mathbb{E}[X_1+X_2]$ and a variance $\mathbb{V}[X_1+X_2]$

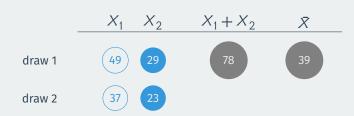
- If X_1 and X_2 are r.v.s, then $X_1 + X_2$ is a r.v.
 - ► Has a mean $\mathbb{E}[X_1 + X_2]$ and a variance $\mathbb{V}[X_1 + X_2]$
- The sample mean is a function of sums and so it is a r.v. too:

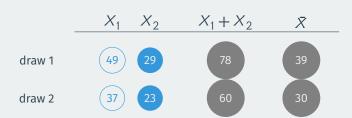
$$\overline{X} = \frac{X_1 + X_2}{2}$$

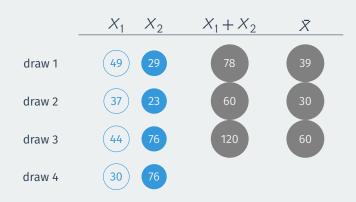
- If X_1 and X_2 are r.v.s, then $X_1 + X_2$ is a r.v.
 - ► Has a mean $\mathbb{E}[X_1 + X_2]$ and a variance $\mathbb{V}[X_1 + X_2]$
- The sample mean is a function of sums and so it is a r.v. too:

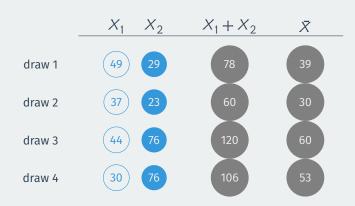
$$\overline{X} = \frac{X_1 + X_2}{2}$$

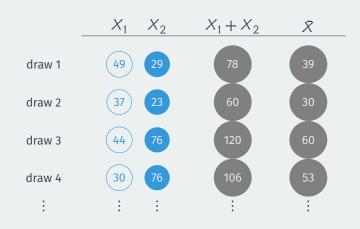
• This is the average age of two randomly selected respondents.

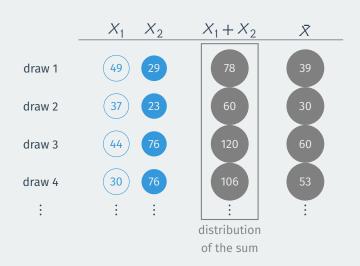


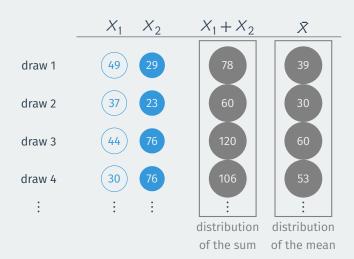












• Often work with independent and identically distributed r.v.s, X_1,\dots,X_n

- Often work with independent and identically distributed r.v.s, X_1,\dots,X_n
 - Random sample of *n* respondents on a survey question.

- Often work with independent and identically distributed r.v.s, X_1,\dots,X_n
 - Random sample of *n* respondents on a survey question.
 - ► Written "i.i.d."

- Often work with **independent and identically distributed** r.v.s, X_1,\ldots,X_n
 - Random sample of *n* respondents on a survey question.
 - ► Written "i.i.d."
- Independent: value that X_i takes doesn't affect distribution of X_j

- Often work with independent and identically distributed r.v.s, X_1,\dots,X_n
 - Random sample of *n* respondents on a survey question.
 - ► Written "i.i.d."
- Independent: value that X_i takes doesn't affect distribution of X_j
- Identically distributed: distribution of X_i is the same for all i

- Often work with **independent and identically distributed** r.v.s, X_1,\ldots,X_n
 - Random sample of *n* respondents on a survey question.
 - ► Written "i.i.d."
- Independent: value that X_i takes doesn't affect distribution of X_j
- **Identically distributed**: distribution of X_i is the same for all i
 - $\mathbb{E}(X_1) = \mathbb{E}(X_2) = \dots = \mathbb{E}(X_n) = \mu$

- Often work with **independent and identically distributed** r.v.s, X_1,\ldots,X_n
 - Random sample of *n* respondents on a survey question.
 - ► Written "i.i.d."
- Independent: value that X_i takes doesn't affect distribution of X_j
- **Identically distributed**: distribution of X_i is the same for all i
 - $ightharpoonup \mathbb{E}(X_1) = \mathbb{E}(X_2) = \cdots = \mathbb{E}(X_n) = \mu$
 - $\mathbb{V}(X_1) = \mathbb{V}(X_2) = \dots = \mathbb{V}(X_n) = \sigma^2$

$$\overline{X}_n = \frac{X_1 + X_2 + \dots + X_n}{n}$$

• Sample mean of i.i.d. random variables:

$$\overline{X}_n = \frac{X_1 + X_2 + \dots + X_n}{n}$$

• \overline{X}_n is a random variable, what is its distribution?

$$\overline{X}_n = \frac{X_1 + X_2 + \dots + X_n}{n}$$

- \overline{X}_n is a random variable, what is its distribution?
 - ▶ What is the expectation of this distribution, $\mathbb{E}[\overline{X}_n]$?

$$\overline{X}_n = \frac{X_1 + X_2 + \dots + X_n}{n}$$

- \overline{X}_n is a random variable, what is its distribution?
 - ▶ What is the expectation of this distribution, $\mathbb{E}[\overline{X}_n]$?
 - ▶ What is the variance of this distribution, $\mathbb{V}[\overline{X}_n]$?

$$\overline{X}_n = \frac{X_1 + X_2 + \dots + X_n}{n}$$

- \overline{X}_n is a random variable, what is its distribution?
 - ▶ What is the expectation of this distribution, $\mathbb{E}[\overline{X}_n]$?
 - Mhat is the variance of this distribution, $\mathbb{V}[\overline{X}_n]$?
 - These will help us know where we should expect the sample mean to be.

$$\overline{X}_n = \frac{X_1 + X_2 + \dots + X_n}{n}$$

- \overline{X}_n is a random variable, what is its distribution?
 - ▶ What is the expectation of this distribution, $\mathbb{E}[\overline{X}_n]$?
 - Mhat is the variance of this distribution, $V[\overline{X}_n]$?
 - These will help us know where we should expect the sample mean to be.
- Fulton County data:

$$\overline{X}_n = \frac{X_1 + X_2 + \dots + X_n}{n}$$

- \overline{X}_n is a random variable, what is its distribution?
 - ▶ What is the expectation of this distribution, $\mathbb{E}[\overline{X}_n]$?
 - Mhat is the variance of this distribution, $\nabla [\overline{X}_n]$?
 - These will help us know where we should expect the sample mean to be.
- Fulton County data:
 - The average age in a one random sample is different than the average age in another random sample.

$$\overline{X}_n = \frac{X_1 + X_2 + \dots + X_n}{n}$$

- \overline{X}_n is a random variable, what is its distribution?
 - What is the expectation of this distribution, $\mathbb{E}[\overline{X}_n]$?
 - What is the variance of this distribution, $V[\overline{X}_n]$?
 - These will help us know where we should expect the sample mean to be.
- Fulton County data:
 - The average age in a one random sample is different than the average age in another random sample.
 - Will the average age in the sample be close to the population age?

Mean and variance of the sample mean

$$\mathbb{E}[\overline{X}_n] = \mu \qquad \mathbb{V}[\overline{X}_n] = \frac{\sigma^2}{n}$$

Mean and variance of the sample mean

Suppose that X_1, \ldots, X_n are i.i.d. r.v.s with $\mathbb{E}[X_i] = \mu$ and $\mathbb{V}[X_i] = \sigma^2$. Then:

$$\mathbb{E}[\overline{X}_n] = \mu \qquad \mathbb{V}[\overline{X}_n] = \frac{\sigma^2}{n}$$

Key insights:

Mean and variance of the sample mean

$$\mathbb{E}[\overline{X}_n] = \mu \qquad \mathbb{V}[\overline{X}_n] = \frac{\sigma^2}{n}$$

- Key insights:
 - Sample mean is on average equal to the population mean

Mean and variance of the sample mean

$$\mathbb{E}[\overline{X}_n] = \mu \qquad \mathbb{V}[\overline{X}_n] = \frac{\sigma^2}{n}$$

- Key insights:
 - Sample mean is on average equal to the population mean
 - ightharpoonup Variance of X_n depends on the population variance of X_i and the sample size

Mean and variance of the sample mean

$$\mathbb{E}[\overline{X}_n] = \mu \qquad \mathbb{V}[\overline{X}_n] = \frac{\sigma^2}{n}$$

- Key insights:
 - Sample mean is on average equal to the population mean
 - ightharpoonup Variance of X_n depends on the population variance of X_i and the sample size
- Standard deviation of the sample mean is called its **standard error**:

$$SE = \sqrt{\mathbb{V}[\overline{X}_n]} = \frac{\sigma}{\sqrt{n}}$$

Law of large numbers

Law of Large Numbers

Let X_1, \ldots, X_n be i.i.d. random variables with mean μ and finite variance σ^2 . Then, \overline{X}_n converges to μ as n gets large.

Law of large numbers

Law of Large Numbers

Let X_1, \ldots, X_n be i.i.d. random variables with mean μ and finite variance σ^2 . Then, \overline{X}_n converges to μ as n gets large.

• Intuition: The probability of \overline{X}_n being "far away" from μ goes to 0 as n gets big.

Law of large numbers

Law of Large Numbers

Let X_1, \ldots, X_n be i.i.d. random variables with mean μ and finite variance σ^2 . Then, \overline{X}_n converges to μ as n gets large.

- Intuition: The probability of \overline{X}_n being "far away" from μ goes to 0 as n gets big.
- The distribution of sample mean "collapses" to population mean.

Draw a random sample of 1000 from Fulton County data.

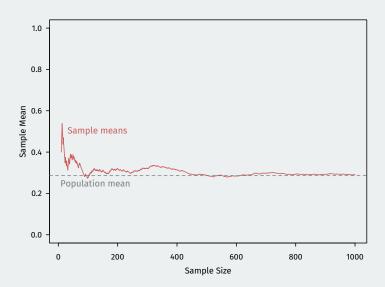
- Draw a random sample of 1000 from Fulton County data.
- Compare the sample average of Democratic registration as we include more of this sample.

- Draw a random sample of 1000 from Fulton County data.
- Compare the sample average of Democratic registration as we include more of this sample.
- Like drawing random samples of size 1, 2, 3, 5, ..., 999, 1000.

- Draw a random sample of 1000 from Fulton County data.
- Compare the sample average of Democratic registration as we include more of this sample.
- Like drawing random samples of size 1, 2, 3, 5, ..., 999, 1000.

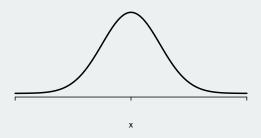
```
dem.mean <- mean(fulton$dem)</pre>
sims <- 1000
# draw a random sample of row numbers (with replacement)
samp <- sample(1:nrow(fulton), size = sims, replace = TRUE)</pre>
dem.samp <- fulton$dem[samp]</pre>
# calculate the mean of the first i values
samp.means <- rep(NA, times = sims)</pre>
for (i in 1:sims) {
  samp.means[i] <- sum(dem.samp[1:i]) / i</pre>
```

LLN in action

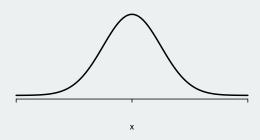


3/ Normal distribution

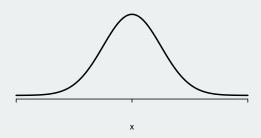
Normal r.v.



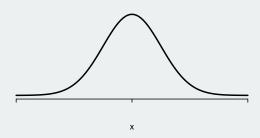
• The **normal distribution** is the classic "bell-shaped" curve.



- The **normal distribution** is the classic "bell-shaped" curve.
 - Extremely ubiquitous in statistics.

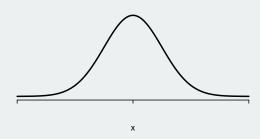


- The **normal distribution** is the classic "bell-shaped" curve.
 - Extremely ubiquitous in statistics.
 - "Sums and means of random variables tend to follow a normal distribution"

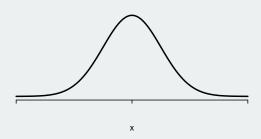


- The **normal distribution** is the classic "bell-shaped" curve.
 - Extremely ubiquitous in statistics.
 - "Sums and means of random variables tend to follow a normal distribution"
- Three key properties:

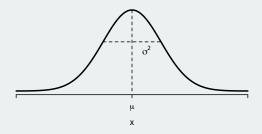
- The **normal distribution** is the classic "bell-shaped" curve.
 - Extremely ubiquitous in statistics.
 - "Sums and means of random variables tend to follow a normal distribution"
- Three key properties:
 - **Unimodal**: one peak at the mean.



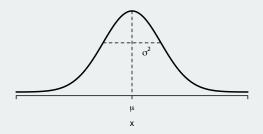
- The normal distribution is the classic "bell-shaped" curve.
 - Extremely ubiquitous in statistics.
 - "Sums and means of random variables tend to follow a normal distribution"
- Three key properties:
 - **Unimodal**: one peak at the mean.
 - **Symmetric** around the mean.



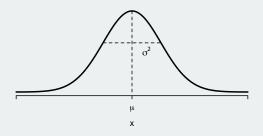
- The normal distribution is the classic "bell-shaped" curve.
 - Extremely ubiquitous in statistics.
 - "Sums and means of random variables tend to follow a normal distribution"
- Three key properties:
 - **Unimodal**: one peak at the mean.
 - **Symmetric** around the mean.
 - **Everywhere positive**: any real value can possibly occur.



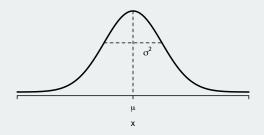
A normal distribution can be affect by two values:



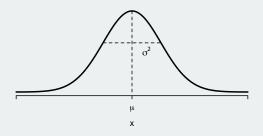
- A normal distribution can be affect by two values:
 - **mean/expected value** usually written as μ



- A normal distribution can be affect by two values:
 - **mean/expected value** usually written as μ
 - **variance** written as σ^2 (standard deviation is σ)



- A normal distribution can be affect by two values:
 - **mean/expected value** usually written as μ
 - **variance** written as σ^2 (standard deviation is σ)
 - Written $X \sim N(\mu, \sigma^2)$.



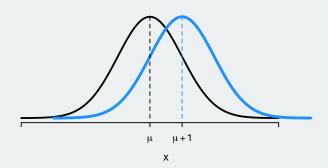
- A normal distribution can be affect by two values:
 - **mean/expected value** usually written as μ
 - **variance** written as σ^2 (standard deviation is σ)
 - ▶ Written $X \sim N(\mu, \sigma^2)$.
- Standard normal distribution: mean 0 and standard deviation 1.

How do transformations of a normal work?

- How do transformations of a normal work?
- Let $X \sim N(\mu, \sigma^2)$ and c be a constant.

- How do transformations of a normal work?
- Let $X \sim N(\mu, \sigma^2)$ and c be a constant.
- If Z = X + c, then $Z \sim N(\mu + c, \sigma^2)$.

- How do transformations of a normal work?
- Let $X \sim N(\mu, \sigma^2)$ and c be a constant.
- If Z = X + c, then $Z \sim N(\mu + c, \sigma^2)$.
- Intuition: adding a constant to a normal shifts the distribution by that constant.

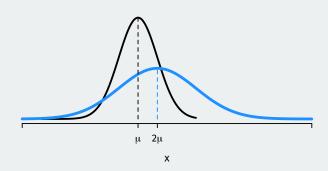


• Let $X \sim N(\mu, \sigma^2)$ and c be a constant.

- Let $X \sim N(\mu, \sigma^2)$ and c be a constant.
- If Z = cX, then $Z \sim N(c\mu, (c\sigma)^2)$.

- Let $X \sim N(\mu, \sigma^2)$ and c be a constant.
- If Z = cX, then $Z \sim N(c\mu, (c\sigma)^2)$.
- Intuition: multiplying a normal by a constant scales the mean and the variance.

- Let $X \sim N(\mu, \sigma^2)$ and c be a constant.
- If Z = cX, then $Z \sim N(c\mu, (c\sigma)^2)$.
- Intuition: multiplying a normal by a constant scales the mean and the variance.



Z-scores of normals

• These two facts imply the **z-score** of a normal variable is a standard normal:

$$z = \frac{X - \mu}{\sigma} \sim N(0, 1)$$

Z-scores of normals

• These two facts imply the **z-score** of a normal variable is a standard normal:

$$z = \frac{X - \mu}{\sigma} \sim N(0, 1)$$

• Subtract the mean and divide by the SD \rightsquigarrow standard normal.

Z-scores of normals

• These two facts imply the **z-score** of a normal variable is a standard normal:

$$z = \frac{X - \mu}{\sigma} \sim N(0, 1)$$

- Subtract the mean and divide by the SD → standard normal.
- ullet z-score measures how many SDs away from the mean a value of X is.

Central limit theorem

Let X_1, \ldots, X_n be i.i.d. r.v.s from a distribution with mean μ and variance σ^2 . Then, \overline{X}_n will be approximately distributed $N(\mu, \sigma^2/n)$ in large samples.

Central limit theorem

Let X_1, \ldots, X_n be i.i.d. r.v.s from a distribution with mean μ and variance σ^2 . Then, \overline{X}_n will be approximately distributed $N(\mu, \sigma^2/n)$ in large samples.

• Approximation is better as *n* goes up.

Central limit theorem

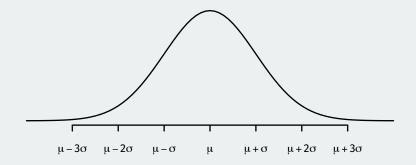
Let X_1, \ldots, X_n be i.i.d. r.v.s from a distribution with mean μ and variance σ^2 . Then, \overline{X}_n will be approximately distributed $N(\mu, \sigma^2/n)$ in large samples.

- Approximation is better as n goes up.
- "Sample means tend to be normally distributed as samples get large."

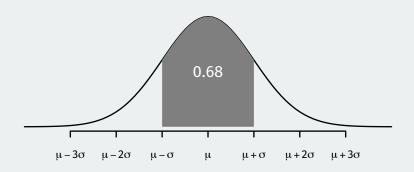
Central limit theorem

Let X_1, \ldots, X_n be i.i.d. r.v.s from a distribution with mean μ and variance σ^2 . Then, \overline{X}_n will be approximately distributed $N(\mu, \sigma^2/n)$ in large samples.

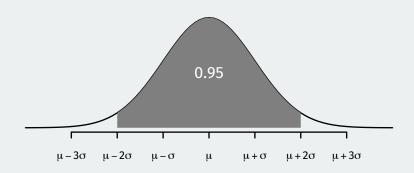
- Approximation is better as *n* goes up.
- "Sample means tend to be normally distributed as samples get large."
- \rightsquigarrow we know how far away X_n will be from its mean.



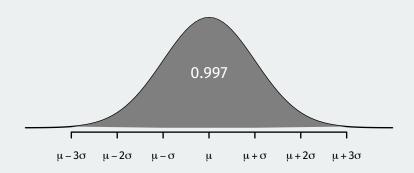
• If $X \sim N(\mu, \sigma^2)$, then:



- If $X \sim N(\mu, \sigma^2)$, then:
 - ightharpoonup pprox 68% of the distribution of X is within 1 SD of the mean.



- If $X \sim N(\mu, \sigma^2)$, then:
 - ightharpoonup pprox 68% of the distribution of X is within 1 SD of the mean.
 - ightharpoonup pprox 95% of the distribution of X is within 2 SDs of the mean.



- If $X \sim N(\mu, \sigma^2)$, then:
 - ightharpoonup pprox 68% of the distribution of X is within 1 SD of the mean.
 - ightharpoonup pprox 95% of the distribution of X is within 2 SDs of the mean.
 - ightharpoonup pprox 99.7% of the distribution of X is within 3 SDs of the mean.

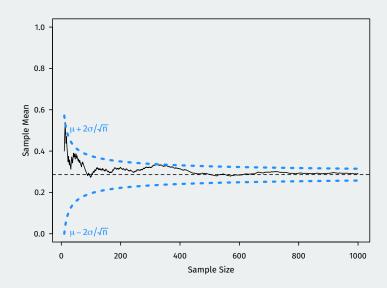
Why the CLT?

• By CLT, sample mean pprox normal with mean μ and SD $\frac{\sigma}{\sqrt{n}}$.

Why the CLT?

- By CLT, sample mean \approx normal with mean μ and SD $\frac{\sigma}{\sqrt{n}}$. By empirical rule, sample mean will be within $2 \times \frac{\sigma}{\sqrt{n}}$ of the population mean 95% of the time.

CLT in action



CLT simulation

1. Draw a sample of size 1000 from the Fulton county population.

CLT simulation

- 1. Draw a sample of size 1000 from the Fulton county population.
- 2. Calculate the sample mean of Democratic registration (dem) for that sample.

CLT simulation

- 1. Draw a sample of size 1000 from the Fulton county population.
- 2. Calculate the sample mean of Democratic registration (dem) for that sample.
- 3. Save the sample mean.

CLT simulation

- 1. Draw a sample of size 1000 from the Fulton county population.
- 2. Calculate the sample mean of Democratic registration (dem) for that sample.
- 3. Save the sample mean.
- 4. Repeat steps 1-3 a large number of times.

CLT in action

```
dem.sigma <- sd(fulton$dem)</pre>
n <- 1000
sims <- 5000
dem.means <- rep(NA, times = sims)</pre>
for (i in 1:sims) {
  ## take i.i.d. sample of row numbers
  samp.ind <- sample(1:nrow(fulton), size = n,</pre>
                       replace = TRUE)
  dem.sample <- fulton$dem[samp.ind]</pre>
  ## record mean of this sample
  dem.means[i] <- mean(dem.sample)</pre>
```

```
## mean and sd of the sample means from each
## repeated sample
mean(dem.means)
```

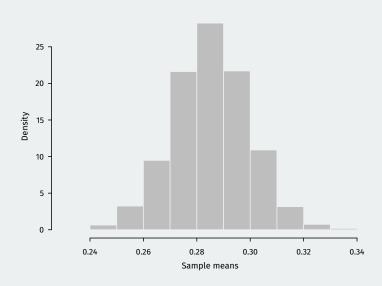
[1] 0.286

sd(dem.means)

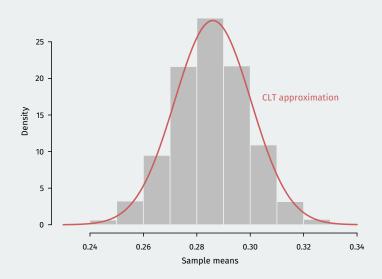
[1] 0.0142

```
## repeated sample
mean(dem.means)
## [1] 0.286
sd(dem.means)
## [1] 0.0142
mean(fulton$dem)
## [1] 0.286
sd(fulton$dem)/sqrt(n)
## [1] 0.0143
```

Histogram of sample means



Histogram of sample means



• We usually only 1 sample, so we'll only get 1 sample mean.

- We usually only 1 sample, so we'll only get 1 sample mean.
- Why do we care about LLN/CLT?

- We usually only 1 sample, so we'll only get 1 sample mean.
- Why do we care about LLN/CLT?
 - CLT gives us assurances our 1 sample mean will won't be too far from population mean.

- We usually only 1 sample, so we'll only get 1 sample mean.
- Why do we care about LLN/CLT?
 - CLT gives us assurances our 1 sample mean will won't be too far from population mean.
 - CLT will also help us create measure of uncertainty for our estimates.

Next time

• Today: learning about samples given population information

Next time

- Today: learning about samples given population information
- Next: Learning about population values from the sample.