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Where are we? Where are we going?

® Trying to learn about (unknown) population parameters from sample data.
® Quantifying uncertainty: confidence intervals and hypothesis tests.
® | ogistics:

P Preliminary analyses due by Tuesday.
» Final report due 12/10.
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2/ Hypothesis testing review



Statistical hypothesis testing

® Statistical hypothesis testing is a thought experiment.
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Statistical hypothesis testing

® Statistical hypothesis testing is a thought experiment.
® \What would the world look like if we knew the truth?

® Example:

P We've learned how to estimate a causal effect from an experiment or

observational study.
| 2

But how can we tell if the difference we estimate is real or just due to chance?
| 2

Hypothesis test: assume there is no effect and determine what the data
would look like in that world.
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Hypothesis testing procedure

Conducted with several steps:

1. Generate your null and alternative hypotheses
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Hypothesis testing procedure

Conducted with several steps:

CoEE R

Generate your null and alternative hypotheses

Collect sample of data

Calculate appropriate test statistic

Use that value to calculate a probability called a p-value

Use p-value to decide whether to reject the null hypothesis or not
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® We looked at hypothesis tests for population proportions.
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® We looked at hypothesis tests for population proportions.

> Tested null that true population proportion was some value: Hq : p = pg

® Under the null hypothesis, we can determine the (approximate) distribution
of the test statistic: .
X — po

Vpo(l — po)/n

® Calculated p-values of this test statistic

® Today: generalizing to differences in means.
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3/ Two-sample tests



Social pressure example

® Back to the Social Pressure Mailer GOTV example.
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Social pressure example

® Back to the Social Pressure Mailer GOTV example.
P Treatment group: postcards showing their own and their neighbors’ voting
records.
P Control group: received nothing.
® Samples are independent
P Example of dependent comparisons: paired comparisons
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Two-sample hypotheses

® Parameter: population ATE 1 — uc
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Two-sample hypotheses

® Parameter: population ATE U1 — uc
P ur: Turnout rate in the population if everyone received treatment.
P uc: Turnout rate in the population if everyone received control.
Goal: learn about the population difference in means
Usual null hypothesis: no population difference in means (no causal effect)
> Nullb Hy : ur —pe =0
» Two-sided alternative: H, : ur — ue = 0
In words: does the treatment and control group have the same distribution?
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Difference-in-means review

® Sample turnout rates: YT = 0.37, YC = 0.30
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® Sample turnout rates: YT = 0.37, YC = 0.30
® Sample sizes: ny = 360, nc = 1890
® Estimator is the sample difference-in-means:

ATE = X7 — Xc =0.07

® Standard error:

-~ Xr(1—=X7)  Xc(l—X,
SEm=\/ T(nT ) c(nC c) _ 0008

® 95% confidence interval:

C195 =E|'\E +1.96 x §EA/ﬁE
—[0.016,0.124]
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CLT again and again

® X isasample mean and so tends toward normal as ny — oo

13/33



CLT again and again

® X isasample mean and so tends toward normal as ny — oo

® X isasample mean and so tends toward normal as nc — oo

13/33



CLT again and again

® X isasample mean and so tends toward normal as ny — oo
® X isasample mean and so tends toward normal as nc — oo

® ~» X1 — X isarandom variable that will tend toward normal as sample
sizes get big.

13/33



CLT again and again

® X isasample mean and so tends toward normal as ny — oo
® X isasample mean and so tends toward normal as nc — oo

® ~» X1 — X isarandom variable that will tend toward normal as sample
sizes get big.
® |n particular, this will approximately true in large samples:

¥~ v pr(l—u pc(l—u
XT_XC"’N<:UT_:UC’ T(nT T)+ c(nC c)>

13/33



CLT again and again

® X isasample mean and so tends toward normal as ny — oo
® X isasample mean and so tends toward normal as nc — oo

® ~» X1 — X isarandom variable that will tend toward normal as sample
sizes get big.
® |n particular, this will approximately true in large samples:

¥~ v pr(l—u pc(l—u
XT_XC"’N<:UT_:UC’ T(nT T)+ c(nC c)>

® Using the z-transformation/standardization:

(YT — yC) — (:uT '—‘,Uc) ~ N(0,0
\/MTU—MT) + pc(1—uc)

nr nc
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Test statistic

® Null hypothesis: Hg : ur — e =0
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Test statistic

® Null hypothesis: Hg : ur — e =0
® Test statistic:

7 = X1 =Xc) = (ur —ue) _ X1 =Xc)—0
SE SE

® Here, the SE is:

o \/ur(1 — ) bl =He)
nr nc

® |n large samples, we can replace true SE with an estimate:

SE \/YT(1 — X71) i Xc(1=Xe)
nr nc

® ByCLT,Z ~ N(O,1)
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Calculating p-values

® Finally! Our test statistic in this sample:

X7—Xc _ 007

Z= 0028
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Calculating p-values

® Finally! Our test statistic in this sample:

X7—Xc _ 007

Z= 0028

2.5

® p-value based on a two-sided test: probability of getting a difference in
means this big (or bigger) if the null hypothesis were true

P Lower p-values ~~ stronger evidence against the null.
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0.4 7
0.3 1
0.2 1
0.1
0.006 g B 0.006
0.0 -
Zops=—-2.5 Uafen =705
T T T T 1
4 2 0 2 4

2 * pnorm(2.5, lower.tail = FALSE)

## [1] 0.0124
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Tests and confidence intervals
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Tests and confidence intervals

® There is a deep connection between confidence intervals and tests.
® Any value outside of a 100 X (1 — a)% confidence interval would have a

p-value less than o if we tested it as the null hypothesis.
> 95% Cl for social pressure experiment: [0.016,0.124]
>~ p-value for Hy : ur — e = O less than 0.05.

® Confidence intervals are all of the null hypotheses we can’t reject with a
test.
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4f Example: checking
randomization



Checking randomization

® |oad the social pressure experiment data:

social <- read.csv(”data/social.csv”)
social <- subset(social, hhsize ==

treated <- subset(social, messages "Neighbors”)
control <- subset(social, messages "Control”)
head(treated[,1:4])

it sex yearofbirth primary2004 messages
## 28 male 1946 0 Neighbors
##t 29 female 1932 0 Neighbors
## 80 female 1946 0 Neighbors
## 81 male 1941 0 Neighbors
## 116  male 1970 1 Neighbors
## 117 female 1971 1 Neighbors
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Checking randomization

® |f randomization was successful, there should be no differences between
the treated and control group on pretreatment variables.
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Checking randomization

® |f randomization was successful, there should be no differences between
the treated and control group on pretreatment variables.

® One variable: year of birth

mean(treated$yearofbirth) - mean(control$yearofbirth)

## [1] -0.115

® Treatment group is older than control group!!

® Did randomization fail?!
P Or...could this just be due to random chance?
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More general difference in means

® Null hypothesis: Hg : u — e =0
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More general difference in means

® Null hypothesis: Hg : u — e =0
® Estimator is still sample difference in means: X7 — X
[ ]

Year of birth isn't binary ~» more general standard error:

> 37% is the sample variance of year of birth in the treated group.
> c’fé is the sample variance of year of birth in the control group.

® Test statistic is the same: (X7 — X)/SE
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t.test(treated$yearofbirth, control$yearofbirth)

#Ht

## Welch Two Sample t-test

#et

## data: treated$yearofbirth and control$yearofbirth
## t = -1.26, df = 33600, p-value = 0.21

## alternative hypothesis: true difference in means is not equal to
## 95 percent confidence interval:

## -0.292963 0.063707

## sample estimates:

## mean of x mean of y

#it 1954.6 1954.7
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5/ Power Analyses



TABLE 2. Effects of Four Mail Treatments on Voter Turnout in the August 2006 Primary
Election

Experimental Group

Control Civic Duty Hawthorne Self Neighbors
Percentage Voting 29.7% 31.5% 32.2% 34.5% 37.8%
N of Individuals 191,243 38,218 38,204 38,218 38,201

® Why did Gerber, Green, and Larimer use sample sizes of 38,000 for each
treatment condition?
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TABLE 2. Effects of Four Mail Treatments on Voter Turnout in the August 2006 Primary
Election

Experimental Group

Control Civic Duty Hawthorne Self Neighbors
Percentage Voting 29.7% 31.5% 32.2% 34.5% 37.8%
N of Individuals 191,243 38,218 38,204 38,218 38,201

® Why did Gerber, Green, and Larimer use sample sizes of 38,000 for each
treatment condition?

® Choose the sample size to ensure that you can detect what you think might
be the true treatment effect:

P Small effect sizes (half percentage point) will require huge n
P Large effect sizes (10 percentage points) will require smaller n

® Detect here means “reject the null of no effect”
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Power of a test

® Definition The power of a test is the probability that a test rejects the null.
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Power of a test

® Definition The power of a test is the probability that a test rejects the null.
P Probability that we reject given some specific value of the parameter
Py(IT] > c)
> power =1 — [P(Type Il error)
P Better tests = higher power.
® |f we fail to reject a null hypothesis, two possible states of the world:
P Null is true (no treatment effect)
P Null is false (there is a treatment effect), but test had low power.
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Why care about power?

® |magine you are a company being sued for racial discrimination in hiring.
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Why care about power?

® |magine you are a company being sued for racial discrimination in hiring.

® Judge forces you to conduct hypothesis test:
P Null hypothesis is that hiring rates for white and black people are equal,

Ho: thy, — 1, =0
» You sample 10 hiring records of each race, conduct hypothesis test and fail to

reject null.
® Say to judge, “look we don’t have any racial discrimination” What's the

problem?
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Power analysis procedure

® Power can help guide the choice of sample size through a power analysis.
P Calculate how likely we are to reject different possible treatment effects at
different sample sizes.
P Can be done before the experiment: which effects will | be able to detect with
high probability at my n?
® Steps to a power analysis:
> Pick some hypothetical effect size, ur — pe = 0.05
P Calculate the distribution of T under that effect size.
P Calculate the probability of rejecting the null under that distribution.
P Repeat for different effect sizes.

27/33



Power analysis

® You want to run another turnout experiment want to make sure you have a
high probability of rejecting the null if the true effect is u — ue = 0.05.
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Power analysis

® You want to run another turnout experiment want to make sure you have a
high probability of rejecting the null if the true effect is u — ue = 0.05.

® Unfortunately, your grant $$ are minimal so you can only send 500 mailers
(250 for each type).

® Need to assume values for unknown variances:
P Assume we know that 072 = crc2 =0.2

> Implies V[X7 — X] =0.2/250 + 0.2/250 = 0.0016.
® Using these assumptions, we can derived the sampling distribution of the
estimator under the proposed effect size:

X1 — Xc ~ N(0.05,0.0016)
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Power analysis
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Power analysis

® What is the probability of rejecting the null if u — uc = 0.05?

® \We reject when

Xr—Xe—0

IT| = >1.96 < | X7—Xc|>1.96 xSE

® Can figure out the probability of this from the sampling distribution!
® Since1.96 x vV0.0016 = 0.078:

P (77 —Xe < —0.078) +P (YT —Xe > 0.078)

29/33



® Power of the test against u,, — u, = 0.05, using the fact that
X1 — Xc ~ N(0.05,0.0016):
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Power inR

® Power of the test against u,, — u, = 0.05, using the fact that
X1 — Xc ~ N(0.05,0.0016):
pnorm(-0.078, mean = 0.05, sd = sqrt(0.0016)) +

pnorm(0.078, mean = 0.05, sd = sqrt(0.0016), lower.tail

## [1] 0.24265
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Power inR

® Power of the test against u,, — u, = 0.05, using the fact that
X1 — Xc ~ N(0.05,0.0016):
pnorm(-0.078, mean = 0.05, sd = sqrt(0.0016)) +

pnorm(0.078, mean = 0.05, sd = sqrt(0.0016), lower.tail

## [1] 0.24265

® |nterpretation: if the true effect was a 5 percentage point increase in voter
turnout, then we would be able to reject the null of no effect about a
quarter of the time.
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Reject Retain Reject
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Assumed treatment effect = 0.05 and power = 0.23952.
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Reject

Retain
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Assumed treatment effect = 0 and power = 0.05.
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Reject Retain
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Assumed treatment effect = 0.2 and power = 0.99882.
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A power analysis

® e can calculate the power for every possible effect size and plot the
resulting power curve:
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A power analysis

® We can calculate the power for every possible effect size and plot the

resulting power curve:
» n =500 (blue), 1000 (red), 10000 (black)

1.0 q

0.6

Power

0.4

0.0 -

-0.2 -0.1 0.0 0.1 0.2
Hypothesized effect size
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® How to conduct inference on regression coefficients.
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