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1/ Today’s agenda
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Where are we? Where are we going?

• Trying to learn about (unknown) population parameters from sample data.

• Quantifying uncertainty: confidence intervals and hypothesis tests.

• Logistics:

▶ Preliminary analyses due by Tuesday.
▶ Final report due 12/10.
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2/ Hypothesis testing review
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Statistical hypothesis testing

• Statistical hypothesis testing is a thought experiment.
• What would the world look like if we knew the truth?
• Example:

▶ We’ve learned how to estimate a causal effect from an experiment or
observational study.

▶ But how can we tell if the difference we estimate is real or just due to chance?
▶ Hypothesis test: assume there is no effect and determine what the data

would look like in that world.
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Hypothesis testing procedure

Conducted with several steps:

1. Generate your null and alternative hypotheses
2. Collect sample of data
3. Calculate appropriate test statistic
4. Use that value to calculate a probability called a p-value
5. Use p-value to decide whether to reject the null hypothesis or not
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Last time

• We looked at hypothesis tests for population proportions.

▶ Tested null that true population proportion was some value: 𝐻0 ∶ 𝑝 = 𝑝0

• Under the null hypothesis, we can determine the (approximate) distribution
of the test statistic:

𝑍 = 𝑋 − 𝑝0
√𝑝0(1 − 𝑝0)/𝑛

• Calculated p-values of this test statistic

• Today: generalizing to differences in means.
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3/ Two-sample tests
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Social pressure example

• Back to the Social Pressure Mailer GOTV example.
▶ Treatment group: postcards showing their own and their neighbors’ voting

records.
▶ Control group: received nothing.

• Samples are independent
▶ Example of dependent comparisons: paired comparisons
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Two-sample hypotheses

• Parameter: population ATE 𝜇𝑇 − 𝜇𝐶▶ 𝜇𝑇: Turnout rate in the population if everyone received treatment.▶ 𝜇𝐶 : Turnout rate in the population if everyone received control.
• Goal: learn about the population difference in means
• Usual null hypothesis: no population difference in means (no causal effect)

▶ Null: 𝐻0 ∶ 𝜇𝑇 − 𝜇𝐶 = 0
▶ Two-sided alternative: 𝐻1 ∶ 𝜇𝑇 − 𝜇𝐶 ≠ 0

• In words: does the treatment and control group have the same distribution?
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Difference-in-means review

• Sample turnout rates: 𝑋𝑇 = 0.37, 𝑋𝐶 = 0.30
• Sample sizes: 𝑛𝑇 = 360, 𝑛𝐶 = 1890
• Estimator is the sample difference-in-means:

ÂTE = 𝑋𝑇 − 𝑋𝐶 = 0.07
• Standard error:

ŜEÂTE = √
𝑋𝑇(1 − 𝑋𝑇)

𝑛𝑇
+ 𝑋𝐶(1 − 𝑋𝐶)

𝑛𝐶
= 0.028

• 95% confidence interval:

𝐶𝐼95 =ÂTE ± 1.96 × ŜEÂTE
=[0.016, 0.124]
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CLT again and again

• 𝑋𝑇 is a sample mean and so tends toward normal as 𝑛𝑇 → ∞
• 𝑋𝐶 is a sample mean and so tends toward normal as 𝑛𝐶 → ∞
• ⇝ 𝑋𝑇 − 𝑋𝐶 is a random variable that will tend toward normal as sample
sizes get big.

• In particular, this will approximately true in large samples:

𝑋𝑇 − 𝑋𝐶 ∼ 𝑁 (𝜇𝑇 − 𝜇𝐶 , 𝜇𝑇(1 − 𝜇𝑇)
𝑛𝑇

+ 𝜇𝐶(1 − 𝜇𝐶)
𝑛𝐶 )

• Using the z-transformation/standardization:

(𝑋𝑇 − 𝑋𝐶) − (𝜇𝑇 − 𝜇𝐶)

√
𝜇𝑇(1−𝜇𝑇)

𝑛𝑇
+ 𝜇𝐶(1−𝜇𝐶)

𝑛𝐶

∼ 𝑁(0, 1)
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Test statistic
• Null hypothesis: 𝐻0 ∶ 𝜇𝑇 − 𝜇𝐶 = 0
• Test statistic:

𝑍 = (𝑋𝑇 − 𝑋𝐶) − (𝜇𝑇 − 𝜇𝐶)
𝑆𝐸 = (𝑋𝑇 − 𝑋𝐶) − 0

𝑆𝐸

• Here, the SE is:

𝑆𝐸 = √
𝜇𝑇(1 − 𝜇𝑇)

𝑛𝑇
+ 𝜇𝐶(1 − 𝜇𝐶)

𝑛𝐶
• In large samples, we can replace true SE with an estimate:

𝑆𝐸 = √
𝑋𝑇(1 − 𝑋𝑇)

𝑛𝑇
+ 𝑋𝐶(1 − 𝑋𝐶)

𝑛𝐶

• By CLT, 𝑍 ∼ 𝑁(0, 1)
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Calculating p-values

• Finally! Our test statistic in this sample:

𝑍 = 𝑋𝑇 − 𝑋𝐶
ŜE

= 0.07
0.028 = 2.5

• p-value based on a two-sided test: probability of getting a difference in
means this big (or bigger) if the null hypothesis were true

▶ Lower p-values⇝ stronger evidence against the null.
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2 * pnorm(2.5, lower.tail = FALSE)

## [1] 0.0124
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Tests and confidence intervals

• There is a deep connection between confidence intervals and tests.
• Any value outside of a 100 × (1 − 𝛼)% confidence interval would have a
p-value less than 𝛼 if we tested it as the null hypothesis.

▶ 95% CI for social pressure experiment: [0.016, 0.124]
▶ ⇝ p-value for 𝐻0 ∶ 𝜇𝑇 − 𝜇𝐶 = 0 less than 0.05.

• Confidence intervals are all of the null hypotheses we can’t reject with a
test.
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4/ Example: checking
randomization
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Checking randomization

• Load the social pressure experiment data:

social <- read.csv(”data/social.csv”)
social <- subset(social, hhsize == 2)
treated <- subset(social, messages == ”Neighbors”)
control <- subset(social, messages == ”Control”)
head(treated[,1:4])

## sex yearofbirth primary2004 messages
## 28 male 1946 0 Neighbors
## 29 female 1932 0 Neighbors
## 80 female 1946 0 Neighbors
## 81 male 1941 0 Neighbors
## 116 male 1970 1 Neighbors
## 117 female 1971 1 Neighbors
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Checking randomization

• If randomization was successful, there should be no differences between
the treated and control group on pretreatment variables.

• One variable: year of birth

mean(treated$yearofbirth) - mean(control$yearofbirth)

## [1] -0.115

• Treatment group is older than control group!!
• Did randomization fail?!

▶ Or…could this just be due to random chance?
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More general difference in means

• Null hypothesis: 𝐻0 ∶ 𝜇𝑇 − 𝜇𝐶 = 0
• Estimator is still sample difference in means: 𝑋𝑇 − 𝑋𝐶• Year of birth isn’t binary⇝ more general standard error:

ŜE = √ŜE
2
𝑇 + ŜE

2
𝐶 = √

𝜎2
𝑇

𝑛𝑇
+ 𝜎2

𝐶
𝑛𝐶

▶ 𝜎 2
𝑇 is the sample variance of year of birth in the treated group.

▶ 𝜎 2
𝐶 is the sample variance of year of birth in the control group.

• Test statistic is the same: (𝑋𝑇 − 𝑋𝐶)/ŜE
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R can do the work

t.test(treated$yearofbirth, control$yearofbirth)

##
## Welch Two Sample t-test
##
## data: treated$yearofbirth and control$yearofbirth
## t = -1.26, df = 33600, p-value = 0.21
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.292963 0.063707
## sample estimates:
## mean of x mean of y
## 1954.6 1954.7
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5/ Power Analyses
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Effect sizes

• Why did Gerber, Green, and Larimer use sample sizes of 38,000 for each
treatment condition?

• Choose the sample size to ensure that you can detect what you think might
be the true treatment effect:

▶ Small effect sizes (half percentage point) will require huge 𝑛
▶ Large effect sizes (10 percentage points) will require smaller 𝑛

• Detect here means “reject the null of no effect”
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Power of a test

• Definition The power of a test is the probability that a test rejects the null.
▶ Probability that we reject given some specific value of the parameter

ℙ𝜃(|𝑇| > 𝑐)
▶ Power = 1 − ℙ(Type II error)
▶ Better tests = higher power.

• If we fail to reject a null hypothesis, two possible states of the world:
▶ Null is true (no treatment effect)
▶ Null is false (there is a treatment effect), but test had low power.
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Why care about power?

• Imagine you are a company being sued for racial discrimination in hiring.
• Judge forces you to conduct hypothesis test:

▶ Null hypothesis is that hiring rates for white and black people are equal,
𝐻0 ∶ 𝜇𝑤 − 𝜇𝑏 = 0

▶ You sample 10 hiring records of each race, conduct hypothesis test and fail to
reject null.

• Say to judge, “look we don’t have any racial discrimination”! What’s the
problem?
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Power analysis procedure

• Power can help guide the choice of sample size through a power analysis.
▶ Calculate how likely we are to reject different possible treatment effects at

different sample sizes.
▶ Can be done before the experiment: which effects will I be able to detect with

high probability at my 𝑛?
• Steps to a power analysis:

▶ Pick some hypothetical effect size, 𝜇𝑇 − 𝜇𝐶 = 0.05
▶ Calculate the distribution of 𝑇 under that effect size.
▶ Calculate the probability of rejecting the null under that distribution.
▶ Repeat for different effect sizes.
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Power analysis

• You want to run another turnout experiment want to make sure you have a
high probability of rejecting the null if the true effect is 𝜇𝑇 − 𝜇𝐶 = 0.05.

• Unfortunately, your grant $$ are minimal so you can only send 500 mailers
(250 for each type).

• Need to assume values for unknown variances:
▶ Assume we know that 𝜎 2

𝑇 = 𝜎 2
𝐶 = 0.2

▶ Implies 𝕍[𝑋𝑇 − 𝑋𝐶] = 0.2/250 + 0.2/250 = 0.0016.
• Using these assumptions, we can derived the sampling distribution of the
estimator under the proposed effect size:

𝑋𝑇 − 𝑋𝐶 ≈ 𝑁(0.05, 0.0016)
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Power analysis

• What is the probability of rejecting the null if 𝜇𝑇 − 𝜇𝐶 = 0.05?
• We reject when

|𝑇| = ∣𝑋𝑇 − 𝑋𝐶 − 0
ŜE ∣ > 1.96 ⟺ |𝑋𝑇 − 𝑋𝐶 | > 1.96 × ŜE

• Can figure out the probability of this from the sampling distribution!

• Since 1.96 × √0.0016 = 0.078:

ℙ (𝑋𝑇 − 𝑋𝐶 < −0.078) + ℙ (𝑋𝑇 − 𝑋𝐶 > 0.078)
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Power in R

• Power of the test against 𝜇𝑦 − 𝜇𝑥 = 0.05, using the fact that
𝑋𝑇 − 𝑋𝐶 ≈ 𝑁(0.05, 0.0016):

pnorm(-0.078, mean = 0.05, sd = sqrt(0.0016)) +
pnorm(0.078, mean = 0.05, sd = sqrt(0.0016), lower.tail = FALSE)

## [1] 0.24265

• Interpretation: if the true effect was a 5 percentage point increase in voter
turnout, then we would be able to reject the null of no effect about a
quarter of the time.
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Power graph
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Power graph
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Assumed treatment effect = 0.05 and power = 0.23952.
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Power graph
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Power graph
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Assumed treatment effect = -0.1 and power = 0.70541.
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Power graph
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Assumed treatment effect = 0 and power = 0.05.
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A power analysis
• We can calculate the power for every possible effect size and plot the
resulting power curve:

▶ 𝑛 = 500 (blue), 1000 (red), 10000 (black)
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Next time

• How to conduct inference on regression coefficients.
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