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1/ Today’s agenda
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Logistics

• Congrats on Midterm 2!
• Final project:

▶ Paragraph discussing data, research question due tomorrow 11/21.
▶ Draǒt analyses and results due Friday, 11/30.
▶ Final report due 12/10.
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Where are we? Where are we going?

• Last time: estimation and inference for surveys.
▶ How far will the sample mean be from the population mean?

• Now: estimation and inference for comparisons between groups.
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2/ Treatment effects with
binary outcomes
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Comparison between groups

• More interesting to compare across groups.
▶ Differences in public opinion across groups
▶ Difference between treatment and control groups.

• Bedrock of causal inference!
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Social pressure experiment

• Back to the Social Pressure Mailer GOTV example.
▶ Primary election in MI 2006

• Treatment group: postcards showing their own and their neighbors’ voting
records.

▶ Sample size of treated group, 𝑛𝑇 = 360
• Control group: received nothing.

▶ Sample size of the control group, 𝑛𝐶 = 1890
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Outcomes

• Outcome: 𝑋𝑖 = 1 if 𝑖 voted, 0 otherwise.
• Turnout rate (sample mean) in treated group, 𝑋𝑇 = 0.37
• Turnout rate (sample mean) in control group, 𝑋𝐶 = 0.30
• Estimated average treatment effect

ÂTE = 𝑋𝑇 − 𝑋𝐶 = 0.07
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Inference for the difference

• Parameter: population ATE 𝜇𝑇 − 𝜇𝐶▶ 𝜇𝑇: Turnout rate in the population if everyone received treatment.▶ 𝜇𝐶 : Turnout rate in the population if everyone received control.
• Estimator: ÂTE = 𝑋𝑇 − 𝑋𝐶

• 𝑋𝑇 is a r.v. with mean 𝔼[𝑋𝑇] = 𝜇𝑇
• 𝑋𝐶 is a r.v. with mean 𝔼[𝑋𝐶] = 𝜇𝐶
• ⇝ 𝑋𝑇 − 𝑋𝐶 is a r.v. with mean 𝜇𝑇 − 𝜇𝐶▶ Sample difference in means is on average equal to the population difference

in means.
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Simulation

• What if these were the true population means? We would still expect some
variation in our estimates:

xt.sims <- rbinom(1000, size = 360, prob = 0.37) / 360
xc.sims <- rbinom(1000, size = 1890, prob = 0.30) / 1890

hist(xt.sims - xc.sims, freq = FALSE, xlab = ”Estimated ATEs”,
main = ”Sampling Distribution”)
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Simulations
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Standard error
• Is an ÂTE = 0.07 big?

• How much variation would we expect in the difference in means across
repeated samples?

• Variance of our estimates:

𝕍 (ÂTE) = 𝕍 (𝑋𝑇 − 𝑋𝐶) = 𝕍(𝑋T) + 𝕍(𝑋C)

= 𝜇𝑇(1 − 𝜇𝑇)
𝑛𝑇

+ 𝜇𝐶(1 − 𝜇𝐶)
𝑛𝐶

• Standard error is the square root of this variance:

ŜEÂTE = √
𝑋𝑇(1 − 𝑋𝑇)

𝑛𝑇
+ 𝑋𝐶(1 − 𝑋𝐶)

𝑛𝐶
= 0.028

• SE represents how far, on average, 𝑋𝑇 − 𝑋𝐶 will be from 𝜇𝑇 − 𝜇𝐶 .
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Confidence intervals

• We can construct confidence intervals based on the CLT like last time.

𝐶𝐼95 =ÂTE ± 1.96 × ŜEÂTE
=0.07 ± 1.96 × 0.028
=0.07 ± 0.054
=[0.016, 0.124]

• Range of possibilities taking into account plausible chance errors.

• 0 not included in this CI⇝ chance error as big as the estimated effect
unlikely.
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3/ Treatment effects with
non-binary outcomes
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Minimumwage study revisited
• Social pressure experiment had binary outcomes⇝ special rules.
• What about general outcomes? (continuous, other discrete)
• Setting: study of how minimum wage increase in New Jersey affected
employment, using Pennsylvania as a comparison group.

minwage <- read.csv(”data/minwage.csv”)

# proportion of those fully employed before and after
# the increase in the minimum wage
minwage$fullPropBefore <- minwage$fullBefore /

(minwage$fullBefore + minwage$partBefore)
minwage$fullPropAfter <- minwage$fullAfter /

(minwage$fullAfter + minwage$partAfter)

# separate NJ and PA
minwageNJ <- subset(minwage, subset = (location != ”PA”))
minwagePA <- subset(minwage, subset = (location == ”PA”))
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Cross-section comparison

• Assume no confounders between NJ and PA
• Estimate: ÂTE = 𝑋NJ − 𝑋PA

est <- mean(minwageNJ$fullPropAfter) -
mean(minwagePA$fullPropAfter)

est

## [1] 0.0481
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Standard error
• Standard error of a general difference-in-means of independent samples is

𝕍 (ÂTE) = 𝕍 (𝑋NJ − 𝑋PA) = 𝕍(𝑋NJ) + 𝕍(𝑋PA)

• Use this to estimate the SE:

ŜEÂTE = √�̂� (ÂTE) = √
�̂�(𝑋NJ)

𝑛NJ + �̂�(𝑋PA)
𝑛PA

nNJ <- nrow(minwageNJ)
nPA <- nrow(minwagePA)
se <- sqrt(var(minwageNJ$fullPropAfter) / nNJ +

var(minwagePA$fullPropAfter) / nPA)
se

## [1] 0.0336
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Quick aside on CIs

• Confidence intervals based on CLT:

ÂTE ± 𝑧𝛼/2 × ŜEÂTE

• How do we calculate 𝑧𝛼/2 for any possible CI?
• Plug 1 − 𝛼/2 into qnorm() function:
• Example: 92% CI ⇝ 𝛼 = 0.08⇝ 1 − 𝛼/2 = 0.96

# z-values for 92% CI
qnorm(0.96)

## [1] 1.75
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Confidence intervals
• Confidence intervals based on CLT:

ÂTE ± 𝑧𝛼/2 × ŜEÂTE

# 90%
c(est - se * qnorm(0.95), est + se * qnorm(0.95))

## [1] -0.00715 0.10338
# 95%
c(est - se * qnorm(0.975), est + se * qnorm(0.975))

## [1] -0.0177 0.1140
# 99%
c(est - se * qnorm(0.995), est + se * qnorm(0.995))

## [1] -0.0384 0.1347
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Before-and-aǒter comparison

• Assumption: only change over time is the treatment
• Average changes in employment in each store before and aǒter MW change

▶ Let 𝑍𝑖 = 𝑋𝑖,aǒter − 𝑋𝑖,before
• Estimate: ÂTE = 1

𝑛𝑁𝐽 ∑𝑁
𝑖=1 𝑍𝑖

diffs <- minwageNJ$fullPropAfter - minwageNJ$fullPropBefore
est <- mean(diffs)
est

## [1] 0.0239
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Standard errors for before-and-aǒter

• Standard error: ŜEÂTE = √�̂� (ÂTE) = √
�̂�(𝑍𝑖)
𝑛𝑁𝐽

se <- sqrt(var(diffs) / nNJ)
se

## [1] 0.0176

• 95% confidence interval:

c(est - se * qnorm(0.975), est + se * qnorm(0.975))

## [1] -0.0107 0.0585
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Next steps

• Next week: hypothesis testing
• Then regression estimation.
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