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1/ Today's agenda



® Congrats on Midterm 2!

® Final project:
P Paragraph discussing data, research question due tomorrow 11/21.
P Draft analyses and results due Friday, 11/30.
» Final report due 12/10.
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Where are we? Where are we going

® |ast time: estimation and inference for surveys.
» How far will the sample mean be from the population mean?

® Now: estimation and inference for comparisons between groups.
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2/ Treatment effects with
binary outcomes



Comparison between groups

® More interesting to compare across groups.
P Differences in public opinion across groups
» Difference between treatment and control groups.

® Bedrock of causal inference!
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Social pressure experiment

® Back to the Social Pressure Mailer GOTV example.
P Primary election in MI 2006
® Treatment group: postcards showing their own and their neighbors’ voting
records.
» Sample size of treated group, ny = 360

® Control group: received nothing.
> Sample size of the control group, no = 1890
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® Outcome: X; = 1if i voted, 0 otherwise.
® Turnout rate (sample mean) in treated group, ?T = 0.37

® Turnout rate (sample mean) in control group, 7C =0.30

Estimated average treatment effect

ATE = X7 — X =0.07
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Inference for the difference

® Parameter: population ATE U1 — ¢
P ur: Turnout rate in the population if everyone received treatment.
P uc: Turnout rate in the population if everyone received control.

® Estimator: ATE = YT — Xc

® X isarv. with mean [E[ X 7] = ur
® Xcisarv. withmean E[Xc] = uc

~ X1 — X is arv. with mean pur — uc
P Sample difference in means is on average equal to the population difference
in means.
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® \What if these were the true population means? We would still expect some
variation in our estimates:

xt.sims <- rbinom(1000, size = 360, prob = 0.37) / 360
Xc.sims <- rbinom(1000, size 1890, prob = 0.30) / 1890

hist(xt.sims - xc.sims, freq FALSE, xlab = "Estimated ATEs”,
main = "Sampling Distribution”)
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Sampling Distribution

Density
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Standard error

Is an ATE = 0.07 big?

How much variation would we expect in the difference in means across
repeated samples?

Variance of our estimates:
v (ATt) =V (YT - YC) = V(X7) + V(X,)

_ dr(—pr) | kel — k)
nr nc

Standard error is the square root of this variance:

- Xr(1=X7) , Xc(1=X¢)
Bt = ¢ nr + e = 0.028

SE represents how far, on average, YT — yC will be from ur — .
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Confidence intervals

® We can construct confidence intervals based on the CLT like last time.

Clos =ATE £1.96 X Sz
=0.07 £1.96 x 0.028
=0.07 +0.054
=[0.016,0.124]

® Range of possibilities taking into account plausible chance errors.

® 0 notincluded in this Cl ~» chance error as big as the estimated effect
unlikely.
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3/ Treatment effects with
non-binary outcomes



Minimum wage study revisited

® Social pressure experiment had binary outcomes ~~ special rules.

® \What about general outcomes? (continuous, other discrete)

® Setting: study of how minimum wage increase in New Jersey affected
employment, using Pennsylvania as a comparison group.

minwage <- read.csv(”data/minwage.csv”)

minwage$fullPropBefore <- minwage$fullBefore /
(minwage$fullBefore + minwage$partBefore)

minwage$fullPropAfter <- minwage$fullAfter /
(minwage$fullAfter + minwage$partAfter)

minwageNJ <- subset(minwage, subset (location != "PA”))
minwagePA <- subset(minwage, subset = (location == "PA”))




Cross-section comparison

® Assume no confowders titween NJ and PA
® Estimate: ATE = X, — X,

est <- mean(minwageNJ$fullPropAfter) -

mean(minwagePA$fullPropAfter)

est

## [1] 0.0481
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Standard error

® Standard error of a general difference-in-means of independent samples is

\4 (A/T\E) =V (YNJ - yPA) = W(YNJ) + W(YPA)

® Use this to estimate the SE:
. — V(X V(X
Sk = \/W(ATE) = \/ (NJNJ) ] (PAPA)

nNJ <- nrow(minwageNJ])
nPA <- nrow(minwagePA)

se <- sqrt(var(minwageNJ$fullPropAfter) / nNJ +
var(minwagePA$fullPropAfter) / nPA)

## [1] 0.0336
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Quick aside on CIs

® Confidence intervals based on CLT:

RTE % 2,/5 X s

® How do we calculate z, /5 for any possible CI?
® plugl — 0(/2 into qnorm( ) function:
Example: 92% Cl ~» a = 0.08 ~»1—a/2 =0.96

gnorm(0.96)

## [1] 1.75
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Confidence intervals

® Confidence intervals based on CLT:

Aﬁ'\E:I:Za/z X§EKT\E

c(est - se = gnorm(0.95), est + se * qgnorm(0.95))

## [1] -0.00715 0.10338

c(est - se * gnorm(0.975), est + se * gqnorm(0.975))

## [1] -0.0177 0.1140

c(est - se * gnorm(0.995), est + se * gnorm(0.995))

## [1] -0.0384 0.1347

® These are large-sample approximations! -



Before-and-after comparison

® Assumption: only change over time is the treatment
® Average changes in employment in each store before and after MW change
> Let Zi =X - Xi,before

. =~ 1 <N
® Estimate: ATE = — >~ Z;
nNy T

i,after

diffs <- minwageNJ$fullPropAfter - minwageNJ$fullPropBefore

est <- mean(diffs)
est

## [1] 0.0239
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Standard errors for before-and-after

= — Y(Z:
® Standard error: SEg = \/ WV (ATE) =3 /M
nNyJ

se <- sqrt(var(diffs) / nNJ)
se

## [1] 0.0176

® 95% confidence interval:

c(est - se = gnorm(0.975), est + se * gnorm(0.975))

## [1] -0.0107 0.0585
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® Next week: hypothesis testing
® Then regression estimation.
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