Gov 50: 6. Descriptive Statistics

Matthew Blackwell

Harvard University

Fall 2018

1. Today's agenda

- 2. Measurement
- 3. Descriptive Statistics
- 4. Wrap-up

1/ Today's agenda

• Homework 1

Homework 1

Due tonight by midnight.

Logistics

Homework 1

- Due tonight by midnight.
- Submit your Rmd and pdf files.

Logistics

Homework 1

- Due tonight by midnight.
- Submit your Rmd and pdf files.
- Partial credit, so attempt all parts!

Homework 1

- Due tonight by midnight.
- Submit your Rmd and pdf files.
- Partial credit, so attempt all parts!
- DataCamp Assignment 3 due next Thursday

- Homework 1
 - Due tonight by midnight.
 - Submit your Rmd and pdf files.
 - Partial credit, so attempt all parts!
- DataCamp Assignment 3 due next Thursday
- Notetaker

What is causality?

- What is causality?
- Using data to estimate causal effects

- What is causality?
- Using data to estimate causal effects
- Next few lectures:

- What is causality?
- Using data to estimate causal effects
- Next few lectures:
 - How do we measure concepts?

- What is causality?
- Using data to estimate causal effects

Next few lectures:

- How do we measure concepts?
- Using data to describe the world

- What is causality?
- Using data to estimate causal effects

Next few lectures:

- How do we measure concepts?
- Using data to describe the world
- Numerical summaries of variables

2/ Measurement

Does minimum wage change levels of employment?

- Does minimum wage change levels of employment?
- Does outgroup contact influence views on immigration?

- Does minimum wage change levels of employment?
- Does outgroup contact influence views on immigration?
- Theories are made up of **concepts**:

- Does minimum wage change levels of employment?
- Does outgroup contact influence views on immigration?
- Theories are made up of **concepts**:
 - Minimum wage, level of employment, outgroup contact, views on immigration.

- Does minimum wage change levels of employment?
- Does outgroup contact influence views on immigration?
- Theories are made up of **concepts**:
 - Minimum wage, level of employment, outgroup contact, views on immigration.
 - We took these for granted when talking about causality.

- Does minimum wage change levels of employment?
- Does outgroup contact influence views on immigration?
- Theories are made up of **concepts**:
 - Minimum wage, level of employment, outgroup contact, views on immigration.
 - We took these for granted when talking about causality.
- Important to consider how we measure these concepts.

- Does minimum wage change levels of employment?
- Does outgroup contact influence views on immigration?
- Theories are made up of **concepts**:
 - Minimum wage, level of employment, outgroup contact, views on immigration.
 - We took these for granted when talking about causality.
- Important to consider how we measure these concepts.
 - Some more straightforward: what is your age?

- Does minimum wage change levels of employment?
- Does outgroup contact influence views on immigration?
- Theories are made up of **concepts**:
 - Minimum wage, level of employment, outgroup contact, views on immigration.
 - We took these for granted when talking about causality.
- Important to consider how we measure these concepts.
 - Some more straightforward: what is your age?
 - Others more complicated: what does it mean to "be liberal"?

- Does minimum wage change levels of employment?
- Does outgroup contact influence views on immigration?
- Theories are made up of **concepts**:
 - Minimum wage, level of employment, outgroup contact, views on immigration.
 - We took these for granted when talking about causality.
- Important to consider how we measure these concepts.
 - Some more straightforward: what is your age?
 - Others more complicated: what does it mean to "be liberal"?
 - Have to create an operational definition of a concept to make it into a variable in our dataset.

• Concept: presidential approval.

- Concept: presidential approval.
- Conceptual definition:

- Concept: presidential approval.
- Conceptual definition:
 - Extent to which US adults support the actions and policies of the current US president.

- Concept: presidential approval.
- Conceptual definition:
 - Extent to which US adults support the actions and policies of the current US president.
- Operational definition:

- Concept: presidential approval.
- Conceptual definition:
 - Extent to which US adults support the actions and policies of the current US president.
- Operational definition:
 - "On a scale from 1 to 5, where 1 is least supportive and 5 is more supportive, how much would you say you support the job that Donald Trump is doing as president?"

• **Measurement error**: chance variation in our measurements.

- Measurement error: chance variation in our measurements.
 - individual measurement = exact value + chance error

Measurement error

• Measurement error: chance variation in our measurements.

- individual measurement = exact value + chance error
- chance errors tend to cancel out when we take averages.
• Measurement error: chance variation in our measurements.

- individual measurement = exact value + chance error
- chance errors tend to cancel out when we take averages.
- No matter how careful we are, a measurement could have always come out differently.

- Measurement error: chance variation in our measurements.
 - individual measurement = exact value + chance error
 - chance errors tend to cancel out when we take averages.
- No matter how careful we are, a measurement could have always come out differently.
 - Panel study of 19,000 respondents: 20 reported being a citizen in 2010 and then a non-citizen in 2012.

- Measurement error: chance variation in our measurements.
 - individual measurement = exact value + chance error
 - chance errors tend to cancel out when we take averages.
- No matter how careful we are, a measurement could have always come out differently.
 - Panel study of 19,000 respondents: 20 reported being a citizen in 2010 and then a non-citizen in 2012.
 - Data entry errors.

- Measurement error: chance variation in our measurements.
 - individual measurement = exact value + chance error
 - chance errors tend to cancel out when we take averages.
- No matter how careful we are, a measurement could have always come out differently.
 - Panel study of 19,000 respondents: 20 reported being a citizen in 2010 and then a non-citizen in 2012.
 - Data entry errors.
- **Bias**: systematic errors for all units in the same direction.

- Measurement error: chance variation in our measurements.
 - individual measurement = exact value + chance error
 - chance errors tend to cancel out when we take averages.
- No matter how careful we are, a measurement could have always come out differently.
 - Panel study of 19,000 respondents: 20 reported being a citizen in 2010 and then a non-citizen in 2012.
 - Data entry errors.
- **Bias**: systematic errors for all units in the same direction.
 - individual measurement = exact value + bias + chance error.

- Measurement error: chance variation in our measurements.
 - individual measurement = exact value + chance error
 - chance errors tend to cancel out when we take averages.
- No matter how careful we are, a measurement could have always come out differently.
 - Panel study of 19,000 respondents: 20 reported being a citizen in 2010 and then a non-citizen in 2012.
 - Data entry errors.
- **Bias**: systematic errors for all units in the same direction.
 - individual measurement = exact value + bias + chance error.
 - "What did you eat yesterday?" ~> underreporting

A biased poll?

3/ Descriptive Statistics

• A **variable** is a series of measurements about some concept.

- A **variable** is a series of measurements about some concept.
- **Descriptive statistics** are numerical summaries of those measurements.

- A **variable** is a series of measurements about some concept.
- **Descriptive statistics** are numerical summaries of those measurements.
 - If we smart enough, we wouldn't need them: just look at the list of numbers and completely understand.

- A **variable** is a series of measurements about some concept.
- **Descriptive statistics** are numerical summaries of those measurements.
 - If we smart enough, we wouldn't need them: just look at the list of numbers and completely understand.
- Two salient features of a variable that we want to know:

- A **variable** is a series of measurements about some concept.
- **Descriptive statistics** are numerical summaries of those measurements.
 - If we smart enough, we wouldn't need them: just look at the list of numbers and completely understand.
- Two salient features of a variable that we want to know:
 - **Central tendency**: where is the middle/typical/average value.

- A **variable** is a series of measurements about some concept.
- **Descriptive statistics** are numerical summaries of those measurements.
 - If we smart enough, we wouldn't need them: just look at the list of numbers and completely understand.
- Two salient features of a variable that we want to know:
 - **Central tendency**: where is the middle/typical/average value.
 - Spread around the center: are all the data close to the center or spread out?

• "Center" of the data: typical/average value.

- "Center" of the data: typical/average value.
- Mean: sum of the values divided by the number of observations

- "Center" of the data: typical/average value.
- Mean: sum of the values divided by the number of observations
- Median:

- "Center" of the data: typical/average value.
- Mean: sum of the values divided by the number of observations
- Median:

- "Center" of the data: typical/average value.
- Mean: sum of the values divided by the number of observations
- Median:

median = $\begin{cases} middle value \\ sum of two middle values \\ 2 \end{cases}$

if number of entries is odd if number of entries is even

Median more robust to **outliers**:

- "Center" of the data: typical/average value.
- Mean: sum of the values divided by the number of observations
- Median:

median =
$$\begin{cases} middle value \\ \frac{sum of two middle values}{2} \end{cases}$$

- Median more robust to **outliers**:
 - Example 1: data = {0, 1, 2, 3, 5}.

- "Center" of the data: typical/average value.
- Mean: sum of the values divided by the number of observations
- Median:

median =
$$\begin{cases} middle value \\ sum of two middle values \\ \hline 2 \end{cases}$$

- Median more robust to **outliers**:
 - Example 1: data = {0, 1, 2, 3, 5}. mean =

- "Center" of the data: typical/average value.
- Mean: sum of the values divided by the number of observations
- Median:

median =
$$\begin{cases} middle value \\ sum of two middle values \\ 2 \end{cases}$$

- Median more robust to **outliers**:
 - Example 1: data = {0, 1, 2, 3, 5}. mean = 2.2,

- "Center" of the data: typical/average value.
- Mean: sum of the values divided by the number of observations
- Median:

median = { middle value if number of entries is odd if number of entries is even

- Median more robust to **outliers**:
 - Example 1: data = {0, 1, 2, 3, 5}. mean = 2.2, median =

- "Center" of the data: typical/average value.
- Mean: sum of the values divided by the number of observations
- Median:

median =
$$\begin{cases} middle value \\ sum of two middle values \\ \hline 2 \end{cases}$$

- Median more robust to **outliers**:
 - Example 1: data = {0, 1, 2, 3, 5}. mean = 2.2, median = 2

- "Center" of the data: typical/average value.
- Mean: sum of the values divided by the number of observations
- Median:

median =
$$\begin{cases} middle value \\ sum of two middle values \\ \hline 2 \end{cases}$$

if number of entries is odd if number of entries is even

• Median more robust to **outliers**:

- Example 1: data = {0, 1, 2, 3, 5}. mean = 2.2, median = 2
- Example 2: data = {0, 1, 2, 3, 100}.

- "Center" of the data: typical/average value.
- Mean: sum of the values divided by the number of observations
- Median:

median = median = middle value if number of entries is odd if number of entries is ever

- Median more robust to **outliers**:
 - Example 1: data = {0, 1, 2, 3, 5}. mean = 2.2, median = 2
 - Example 2: data = {0, 1, 2, 3, 100}. mean =

- "Center" of the data: typical/average value.
- Mean: sum of the values divided by the number of observations
- Median:

median = median = middle value if number of entries is odd if number of entries is ever

- Median more robust to **outliers**:
 - Example 1: data = {0, 1, 2, 3, 5}. mean = 2.2, median = 2
 - Example 2: data = {0, 1, 2, 3, 100}. mean = 21.2,

- "Center" of the data: typical/average value.
- Mean: sum of the values divided by the number of observations
- Median:

median = median = middle value if number of entries is odd if number of entries is ever

- Median more robust to **outliers**:
 - Example 1: data = {0, 1, 2, 3, 5}. mean = 2.2, median = 2
 - Example 2: data = {0, 1, 2, 3, 100}. mean = 21.2, median =

- "Center" of the data: typical/average value.
- Mean: sum of the values divided by the number of observations
- Median:

median = median = middle value if number of entries is odd if number of entries is ever

- Median more robust to **outliers**:
 - Example 1: data = {0, 1, 2, 3, 5}. mean = 2.2, median = 2
 - Example 2: data = {0, 1, 2, 3, 100}. mean = 21.2, median = 2

- "Center" of the data: typical/average value.
- Mean: sum of the values divided by the number of observations
- Median:

median = median = middle value if number of entries is odd if number of entries is ever

- Median more robust to **outliers**:
 - Example 1: data = {0, 1, 2, 3, 5}. mean = 2.2, median = 2
 - Example 2: data = {0, 1, 2, 3, 100}. mean = 21.2, median = 2
- What does Mark Zuckerberg do to the mean vs median income?

• From QSS: study of how minimum wage increase in New Jersey affected employment, using Pennsylvania as a comparison group.

- From QSS: study of how minimum wage increase in New Jersey affected employment, using Pennsylvania as a comparison group.
- Load the data and create subsets:

- From QSS: study of how minimum wage increase in New Jersey affected employment, using Pennsylvania as a comparison group.
- Load the data and create subsets:

minwage <- read.csv("data/minwage.csv")
minwageNJ <- subset(minwage, subset = (location != "PA"))
minwagePA <- subset(minwage, subset = (location == "PA"))</pre>

Median wages before and after

median(minwageNJ\$wageBefore)

median(minwageNJ\$wageBefore)

[1] 4.5

median(minwageNJ\$wageBefore)

[1] 4.5

median(minwageNJ\$wageAfter)
[1] 4.5

median(minwageNJ\$wageAfter)

[1] 5.05

[1] 4.5

median(minwageNJ\$wageAfter)

[1] 5.05

median(minwagePA\$wageBefore)

[1] 4.5

median(minwageNJ\$wageAfter)

[1] 5.05

median(minwagePA\$wageBefore)

[1] 4.67

[1] 4.5

median(minwageNJ\$wageAfter)

[1] 5.05

median(minwagePA\$wageBefore)

[1] 4.67

median(minwagePA\$wageAfter)

[1] 4.5

median(minwageNJ\$wageAfter)

[1] 5.05

median(minwagePA\$wageBefore)

[1] 4.67

median(minwagePA\$wageAfter)

[1] 4.5

• Are the data close to the center?

- Are the data close to the center?
- Range: $[\min(X), \max(X)]$

- Are the data close to the center?
- Range: $[\min(X), \max(X)]$
- **Quantile** (quartile, quintile, percentile, etc):

- Are the data close to the center?
- Range: $[\min(X), \max(X)]$
- Quantile (quartile, quintile, percentile, etc):
 - 25th percentile = lower quartile (25% of the data below this value)

- Are the data close to the center?
- Range: $[\min(X), \max(X)]$
- Quantile (quartile, quintile, percentile, etc):
 - 25th percentile = lower quartile (25% of the data below this value)
 - 50th percentile = median (50% of the data below this value)

- Are the data close to the center?
- Range: $[\min(X), \max(X)]$
- Quantile (quartile, quintile, percentile, etc):
 - 25th percentile = lower quartile (25% of the data below this value)
 - 50th percentile = median (50% of the data below this value)
 - 75th percentile = upper quartile (75% of the data below this value)

- Are the data close to the center?
- Range: $[\min(X), \max(X)]$
- Quantile (quartile, quintile, percentile, etc):
 - 25th percentile = lower quartile (25% of the data below this value)
 - 50th percentile = median (50% of the data below this value)
 - 75th percentile = upper quartile (75% of the data below this value)
- Interquartile range (IQR): a measure of variability

- Are the data close to the center?
- Range: $[\min(X), \max(X)]$
- Quantile (quartile, quintile, percentile, etc):
 - 25th percentile = lower quartile (25% of the data below this value)
 - 50th percentile = median (50% of the data below this value)
 - 75th percentile = upper quartile (75% of the data below this value)
- Interquartile range (IQR): a measure of variability
 - How spread out is the middle half of the data?

- Are the data close to the center?
- Range: [min(X), max(X)]
- Quantile (quartile, quintile, percentile, etc):
 - 25th percentile = lower quartile (25% of the data below this value)
 - 50th percentile = median (50% of the data below this value)
 - 75th percentile = upper quartile (75% of the data below this value)
- Interquartile range (IQR): a measure of variability
 - How spread out is the middle half of the data?
 - Is most of the data really close to the median or are the values spread out?

- Are the data close to the center?
- Range: $[\min(X), \max(X)]$
- Quantile (quartile, quintile, percentile, etc):
 - 25th percentile = lower quartile (25% of the data below this value)
 - 50th percentile = median (50% of the data below this value)
 - 75th percentile = upper quartile (75% of the data below this value)
- Interquartile range (IQR): a measure of variability
 - How spread out is the middle half of the data?
 - Is most of the data really close to the median or are the values spread out?
- One definition of outliers: over 1.5 × IQR above the upper quartile or below lower quartile.

• summary() gives quartiles:

• summary() gives quartiles:

summary(minwageNJ\$wageBefore)

• summary() gives quartiles:

summary(minwageNJ\$wageBefore)

##	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
##	4.25	4.25	4.50	4.61	4.87	5.75

• summary() gives quartiles:

summary(minwageNJ\$wageBefore)

##	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
##	4.25	4.25	4.50	4.61	4.87	5.75

summary(minwageNJ\$wageAfter)

• summary() gives quartiles:

summary(minwageNJ\$wageBefore)

##	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
##	4.25	4.25	4.50	4,61	4.87	5.75

summary(minwageNJ\$wageAfter)

##	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
##	5.00	5.05	5.05	5.08	5.05	5.75

• summary() gives quartiles:

summary(minwageNJ\$wageBefore)

##	Min. 1	1st Qu.	Median	Mean	3rd Qu.	Max.
##	4.25	4.25	4.50	4.61	4.87	5.75

summary(minwageNJ\$wageAfter)

##	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
##	5.00	5.05	5.05	5.08	5.05	5.75

• IQR() calculates IQR:

• summary() gives quartiles:

summary(minwageNJ\$wageBefore)

##	Min. 1	st Qu.	Median	Mean 3	Brd Qu.	Max.
##	4.25	4.25	4.50	4.61	4.87	5.75

summary(minwageNJ\$wageAfter)

##	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
##	5.00	5.05	5.05	5.08	5.05	5.75

• IQR() calculates IQR:

IQR(minwageNJ\$wageBefore)

• summary() gives quartiles:

summary(minwageNJ\$wageBefore)

##	Min. 1	1st Qu.	Median	Mean	3rd Qu.	Max.
##	4.25	4.25	4.50	4.61	4.87	5.75

summary(minwageNJ\$wageAfter)

##	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
##	5.00	5.05	5.05	5.08	5.05	5.75

• IQR() calculates IQR:

IQR(minwageNJ\$wageBefore)

[1] 0.62

• summary() gives quartiles:

summary(minwageNJ\$wageBefore)

##	Min. 1	1st Qu.	Median	Mean	3rd Qu.	Max.
##	4.25	4.25	4.50	4.61	4.87	5.75

summary(minwageNJ\$wageAfter)

##	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
##	5.00	5.05	5.05	5.08	5.05	5.75

• IQR() calculates IQR:

IQR(minwageNJ\$wageBefore)

[1] 0.62

IQR(minwageNJ\$wageAfter)

• summary() gives quartiles:

summary(minwageNJ\$wageBefore)

##	Min. 1	lst Qu.	Median	Mean 3	Brd Qu.	Max.
##	4.25	4.25	4.50	4.61	4.87	5.75

summary(minwageNJ\$wageAfter)

##	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
##	5.00	5.05	5.05	5.08	5.05	5.75

• IQR() calculates IQR:

IQR(minwageNJ\$wageBefore)

[1] 0.62

IQR(minwageNJ\$wageAfter)

[1] 0

Standard deviation: On average, how far away are data points from the mean?

standard deviation =
$$\sqrt{\frac{1}{n-1}\sum_{i=1}^{n}(x_i - \bar{x})^2}$$

• **Standard deviation**: On average, how far away are data points from the mean?

standard deviation =
$$\sqrt{\frac{1}{n-1}\sum_{i=1}^{n}(x_i - \bar{x})^2}$$

• Steps:

• **Standard deviation**: On average, how far away are data points from the mean?

standard deviation =
$$\sqrt{\frac{1}{n-1}\sum_{i=1}^{n}(x_i - \bar{x})^2}$$

- Steps:
 - 1. Subtract each data point by the mean.

Standard deviation: On average, how far away are data points from the mean?

standard deviation =
$$\sqrt{\frac{1}{n-1}\sum_{i=1}^{n}(x_i - \bar{x})^2}$$

- Steps:
 - 1. Subtract each data point by the mean.
 - 2. Square each resulting difference.

Standard deviation: On average, how far away are data points from the mean?

standard deviation =
$$\sqrt{\frac{1}{n-1}\sum_{i=1}^{n}(x_i - \bar{x})^2}$$

- Steps:
 - 1. Subtract each data point by the mean.
 - 2. Square each resulting difference.
 - 3. Take the sum of these values

• **Standard deviation**: On average, how far away are data points from the mean?

standard deviation =
$$\sqrt{\frac{1}{n-1}\sum_{i=1}^{n}(x_i - \bar{x})^2}$$

- 1. Subtract each data point by the mean.
- 2. Square each resulting difference.
- 3. Take the sum of these values
- 4. Divide by *n* − 1

• **Standard deviation**: On average, how far away are data points from the mean?

standard deviation =
$$\sqrt{\frac{1}{n-1}\sum_{i=1}^{n}(x_i - \bar{x})^2}$$

- 1. Subtract each data point by the mean.
- 2. Square each resulting difference.
- 3. Take the sum of these values
- 4. Divide by *n* − 1
- 5. Take the square root.

Standard deviation: On average, how far away are data points from the mean?

standard deviation =
$$\sqrt{\frac{1}{n-1}\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

- 1. Subtract each data point by the mean.
- 2. Square each resulting difference.
- 3. Take the sum of these values
- 4. Divide by *n* − 1
- 5. Take the square root.
- Sometimes n instead of n 1

Standard deviation: On average, how far away are data points from the mean?

standard deviation =
$$\sqrt{\frac{1}{n-1}\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

- 1. Subtract each data point by the mean.
- 2. Square each resulting difference.
- 3. Take the sum of these values
- 4. Divide by *n* − 1
- 5. Take the square root.
- Sometimes n instead of n 1
- **Variance** = standard deviation²

• **Standard deviation**: On average, how far away are data points from the mean?

standard deviation =
$$\sqrt{\frac{1}{n-1}\sum_{i=1}^{n}(x_i - \bar{x})^2}$$

- 1. Subtract each data point by the mean.
- 2. Square each resulting difference.
- 3. Take the sum of these values
- 4. Divide by *n* − 1
- 5. Take the square root.
- Sometimes n instead of n 1
- **Variance** = standard deviation²
- Why not just take the average deviations from mean without squaring?

• Minimum wage data:
sd(minwageNJ\$wageBefore)

sd(minwageNJ\$wageBefore)

[1] 0.343

sd(minwageNJ\$wageBefore)

[1] 0.343

sd(minwageNJ\$wageAfter)

sd(minwageNJ\$wageBefore)

[1] 0.343

sd(minwageNJ\$wageAfter)

[1] 0.106

• Is a wage of 5.30 an hour large?

- Is a wage of 5.30 an hour large?
- Better question: is 5.30 large relative to the distribution of the data?

- Is a wage of 5.30 an hour large?
- Better question: is 5.30 large relative to the distribution of the data?
 - Big in one dataset might be small in another!

- Is a wage of 5.30 an hour large?
- Better question: is 5.30 large relative to the distribution of the data?
 - Big in one dataset might be small in another!
 - Different units, different spreads of the data, etc.

- Is a wage of 5.30 an hour large?
- Better question: is 5.30 large relative to the distribution of the data?
 - Big in one dataset might be small in another!
 - Different units, different spreads of the data, etc.
- Need a way to put any variable on **common units**.

- Is a wage of 5.30 an hour large?
- Better question: is 5.30 large relative to the distribution of the data?
 - Big in one dataset might be small in another!
 - Different units, different spreads of the data, etc.
- Need a way to put any variable on common units.
- z-score:

- Is a wage of 5.30 an hour large?
- Better question: is 5.30 large relative to the distribution of the data?
 - Big in one dataset might be small in another!
 - Different units, different spreads of the data, etc.
- Need a way to put any variable on common units.
- z-score:

z-score of $x_i = \frac{x_i - \text{mean of } x}{\text{standard deviation of } x}$

Interpretation:

- Is a wage of 5.30 an hour large?
- Better question: is 5.30 large relative to the distribution of the data?
 - Big in one dataset might be small in another!
 - Different units, different spreads of the data, etc.
- Need a way to put any variable on common units.
- z-score:

- Interpretation:
 - Positive values above the mean, negative values below the mean

- Is a wage of 5.30 an hour large?
- Better question: is 5.30 large relative to the distribution of the data?
 - Big in one dataset might be small in another!
 - Different units, different spreads of the data, etc.
- Need a way to put any variable on common units.
- z-score:

- Interpretation:
 - Positive values above the mean, negative values below the mean
 - Units now on the scale of standard deviations away from the mean

- Is a wage of 5.30 an hour large?
- Better question: is 5.30 large relative to the distribution of the data?
 - Big in one dataset might be small in another!
 - Different units, different spreads of the data, etc.
- Need a way to put any variable on common units.
- z-score:

- Interpretation:
 - Positive values above the mean, negative values below the mean
 - Units now on the scale of standard deviations away from the mean
 - Intuition: data more than 3 SDs away from mean are rare.

z-score example

• Jane works at Hi Rise Bakery, where there's a tip jar.

z-score example

- Jane works at Hi Rise Bakery, where there's a tip jar.
- She's been keeping track of her daily tips:

- Jane works at Hi Rise Bakery, where there's a tip jar.
- She's been keeping track of her daily tips:
 - Average tip of \$1.56 with a standard deviation of 20 cents.

- Jane works at Hi Rise Bakery, where there's a tip jar.
- She's been keeping track of her daily tips:
 - Average tip of \$1.56 with a standard deviation of 20 cents.
- Yesterday, Jane got \$1.86 in tips. How big is this?

- Jane works at Hi Rise Bakery, where there's a tip jar.
- She's been keeping track of her daily tips:
 - Average tip of \$1.56 with a standard deviation of 20 cents.
- Yesterday, Jane got \$1.86 in tips. How big is this?

z-score
$$=$$
 $\frac{186 - 156}{20} = \frac{30}{20} = 1.5$

- Jane works at Hi Rise Bakery, where there's a tip jar.
- She's been keeping track of her daily tips:
 - Average tip of \$1.56 with a standard deviation of 20 cents.
- Yesterday, Jane got \$1.86 in tips. How big is this?

z-score
$$=$$
 $\frac{186 - 156}{20} = \frac{30}{20} = 1.5$

• Today she got \$0.56, what about that?

- Jane works at Hi Rise Bakery, where there's a tip jar.
- She's been keeping track of her daily tips:
 - Average tip of \$1.56 with a standard deviation of 20 cents.
- Yesterday, Jane got \$1.86 in tips. How big is this?

z-score
$$=\frac{186-156}{20}=\frac{30}{20}=1.5$$

• Today she got \$0.56, what about that?

z-score
$$=$$
 $\frac{56 - 156}{20} = \frac{-100}{20} = -5$

• Calculate the z-score:

• Calculate the z-score:

wage.mean <- mean(minwageNJ\$wageAfter)
wage.sd <- sd(minwageNJ\$wageAfter)
minwageNJ\$wageAfter.z <- (minwageNJ\$wageAfter - wage.mean)/wage.sd</pre>

Calculate the z-score:

wage.mean <- mean(minwageNJ\$wageAfter)
wage.sd <- sd(minwageNJ\$wageAfter)
minwageNJ\$wageAfter.z <- (minwageNJ\$wageAfter - wage.mean)/wage.sd</pre>

Compare original to z-scores:

Calculate the z-score:

```
wage.mean <- mean(minwageNJ$wageAfter)
wage.sd <- sd(minwageNJ$wageAfter)
minwageNJ$wageAfter.z <- (minwageNJ$wageAfter - wage.mean)/wage.sd</pre>
```

• Compare original to z-scores:

## original summary(minwageNJ\$wageAfter)												
		4										
##	Min.	ist Qu.	Median	Mean 3	rd Qu.	Max.						
##	5,00	5.05	5.05	5.08	5.05	5.75						

Calculate the z-score:

```
wage.mean <- mean(minwageNJ$wageAfter)
wage.sd <- sd(minwageNJ$wageAfter)
minwageNJ$wageAfter.z <- (minwageNJ$wageAfter - wage.mean)/wage.sd</pre>
```

• Compare original to z-scores:

## original summary(minwageNJ\$wageAfter)											
##	5.00	5.05	5.05	5.08 5.05	5.75						
<pre>## z-scores summary(minwageNJ\$wageAfter.z)</pre>											
## ##	Min.	1st Qu.	Median	Mean 3rd Qu.	Max.						

• What did we cover:

• What did we cover:

Measurement is about turning concepts into variables.

- What did we cover:
 - Measurement is about turning concepts into variables.
 - How can we summarize a single variable: center and spread.

- What did we cover:
 - Measurement is about turning concepts into variables.
 - How can we summarize a single variable: center and spread.
- Next time:

- What did we cover:
 - Measurement is about turning concepts into variables.
 - How can we summarize a single variable: center and spread.
- Next time:
 - Read Section 3.3 of QSS.

- What did we cover:
 - Measurement is about turning concepts into variables.
 - How can we summarize a single variable: center and spread.
- Next time:
 - Read Section 3.3 of QSS.
 - Visualizing a single variable.