Gov 50: 14. Regression and Causality (II)

Matthew Blackwell

Harvard University

Fall 2018

1. Today's agenda

- 2. Heterogeneous treatment effects
- 3. Non-linear relationships
- 4. Causality and regression wrap up

1/ Today's agenda

• Last couple of lectures:

• Last couple of lectures:

Learning about how to use regression to predict and estimate causal effects.

- Last couple of lectures:
 - Learning about how to use regression to predict and estimate causal effects.
- Today:

- Last couple of lectures:
 - Learning about how to use regression to predict and estimate causal effects.
- Today:
 - More interaction terms and heterogeneous treatment effects.

- Last couple of lectures:
 - Learning about how to use regression to predict and estimate causal effects.
- Today:
 - More interaction terms and heterogeneous treatment effects.
 - Modeling non-linear relationships.

- Last couple of lectures:
 - Learning about how to use regression to predict and estimate causal effects.
- Today:
 - More interaction terms and heterogeneous treatment effects.
 - Modeling non-linear relationships.
- HW3 due tonight.

2/ Heterogeneous treatment effects

• We'll look at the Michigan experiment that was trying to see if social pressure affects turnout.

- We'll look at the Michigan experiment that was trying to see if social pressure affects turnout.
- Load the data and create an age variable:

- We'll look at the Michigan experiment that was trying to see if social pressure affects turnout.
- Load the data and create an age variable:

social <- read.csv("data/social.csv")
social\$age <- 2006 - social\$yearofbirth
summary(social\$age)</pre>

20.0 41.0

##

- We'll look at the Michigan experiment that was trying to see if social pressure affects turnout.
- Load the data and create an age variable:

socia	<pre>social <- read.csv("data/social.csv")</pre>					
socia	social\$age <- 2006 - social\$yearofbirth					
summa	summary(social\$age)					
##	Min.	1st Qu.	Median	Mean 3rd Qu.	Max.	

49.8 59.0

106.0

50.0

6/	33

- We'll look at the Michigan experiment that was trying to see if social pressure affects turnout.
- Load the data and create an age variable:

<pre>social <- read.csv("data/social.csv") social\$age <- 2006 - social\$yearofbirth summary(social\$age)</pre>							
## ##	Min. 20.0	1st Qu. 41.0	Median 50.0	Mean 3 49.8	rd Qu. 59.0	Max. 106.0	
<pre>social.neighbors <- subset(social,</pre>							

How does the effect of the Neighbors mailer vary by previous voter versus non-voters?

- How does the effect of the Neighbors mailer vary by previous voter versus non-voters?
- Used an interaction term to assess effect heterogeneity between groups.

- How does the effect of the Neighbors mailer vary by previous voter versus non-voters?
- Used an interaction term to assess effect heterogeneity between groups.
- What if we want to know how the effect of the Neighbors mailer varies by age?

- How does the effect of the Neighbors mailer vary by previous voter versus non-voters?
- Used an interaction term to assess effect heterogeneity between groups.
- What if we want to know how the effect of the Neighbors mailer varies by age?
 - Not just two groups, but a continuum of possible age values.

- How does the effect of the Neighbors mailer vary by previous voter versus non-voters?
- Used an interaction term to assess effect heterogeneity between groups.
- What if we want to know how the effect of the Neighbors mailer varies by age?
 - Not just two groups, but a continuum of possible age values.
- Remarkably, the same **interaction term** will work here too!

- How does the effect of the Neighbors mailer vary by previous voter versus non-voters?
- Used an interaction term to assess effect heterogeneity between groups.
- What if we want to know how the effect of the Neighbors mailer varies by age?
 - Not just two groups, but a continuum of possible age values.
- Remarkably, the same **interaction term** will work here too!

$$\widehat{Y}_i = \widehat{\alpha} + \widehat{\beta}_1$$
age $_i + \widehat{\beta}_2$ neighbors $_i + \widehat{\beta}_3$ (age $_i \times$ neighbors $_i$)

• Let
$$X_i = age_i$$
 and $Z_i = neighbors_i$:

$$\widehat{Y}_i = \widehat{\alpha} + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i$$

$$\widehat{Y}_i = \widehat{\alpha} + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i$$

	Control ($Z_i = 0$)	Neighbors ($Z_i = 1$)
25 year-old ($X_i = 25$)		
26 year-old($X_i = 26$)		

$$\widehat{Y}_i = \widehat{\alpha} + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i$$

Control (
$$Z_i = 0$$
)Neighbors ($Z_i = 1$)25 year-old ($X_i = 25$) $\widehat{\alpha} + \widehat{\beta}_1 \cdot 25 + \widehat{\beta}_2 0$ 26 year-old($X_i = 26$)

$$\widehat{Y}_i = \widehat{\alpha} + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i$$

Control (
$$Z_i = 0$$
)Neighbors ($Z_i = 1$)25 year-old ($X_i = 25$) $\widehat{\alpha} + \widehat{\beta}_1 \cdot 25$ 26 year-old($X_i = 26$)

$$\widehat{Y}_i = \widehat{\alpha} + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i$$

Control (
$$Z_i = 0$$
)Neighbors ($Z_i = 1$)25 year-old ($X_i = 25$) $\widehat{\alpha} + \widehat{\beta_1} \cdot 25$ $\widehat{\alpha} + \widehat{\beta_1} \cdot 25 + \widehat{\beta_2}1$ 26 year-old($X_i = 26$)

$$\widehat{Y}_i = \widehat{\alpha} + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i$$

Control (
$$Z_i = 0$$
)Neighbors ($Z_i = 1$)25 year-old ($X_i = 25$) $\widehat{\alpha} + \widehat{\beta_1} \cdot 25$ $\widehat{\alpha} + \widehat{\beta_1} \cdot 25 + \widehat{\beta_2}$ 26 year-old($X_i = 26$)

$$\widehat{Y}_i = \widehat{\alpha} + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i$$

Control (
$$Z_i = 0$$
)Neighbors ($Z_i = 1$)25 year-old ($X_i = 25$) $\widehat{\alpha} + \widehat{\beta_1} \cdot 25$ $\widehat{\alpha} + \widehat{\beta_1} \cdot 25 + \widehat{\beta_2}$ 26 year-old($X_i = 26$) $\widehat{\alpha} + \widehat{\beta_1} \cdot 26$

$$\widehat{Y}_i = \widehat{\alpha} + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i$$

	Control ($Z_i = 0$)	Neighbors ($Z_i = 1$)
25 year-old ($X_i = 25$)	$\widehat{\alpha} + \widehat{\beta}_1 \cdot 25$	$\widehat{\alpha} + \widehat{\beta}_1 \cdot 25 + \widehat{\beta}_2$
26 year-old($X_i = 26$)	$\widehat{\alpha} + \widehat{\beta}_1 \cdot 26$	$\widehat{\alpha} + \widehat{\beta}_1 \cdot 26 + \widehat{\beta}_2$

• Let
$$X_i = age_i$$
 and $Z_i = neighbors_i$:

$$\widehat{Y}_i = \widehat{\alpha} + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i$$

Control (
$$Z_i = 0$$
)Neighbors ($Z_i = 1$)25 year-old ($X_i = 25$) $\widehat{\alpha} + \widehat{\beta_1} \cdot 25$ $\widehat{\alpha} + \widehat{\beta_1} \cdot 25 + \widehat{\beta_2}$ 26 year-old($X_i = 26$) $\widehat{\alpha} + \widehat{\beta_1} \cdot 26$ $\widehat{\alpha} + \widehat{\beta_1} \cdot 26 + \widehat{\beta_2}$

• Effect of Neighbors for a 25 year-old:

$$\widehat{Y}_i = \widehat{\alpha} + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i$$

	Control ($Z_i = 0$)	Neighbors ($Z_i = 1$)
25 year-old ($X_i = 25$)	$\widehat{\alpha} + \widehat{\beta_1} \cdot 25$	$\widehat{\alpha} + \widehat{\beta}_1 \cdot 25 + \widehat{\beta}_2$
26 year-old($X_i = 26$)	$\widehat{\alpha} + \widehat{\beta_1} \cdot 26$	$\widehat{\alpha} + \widehat{\beta}_1 \cdot 26 + \widehat{\beta}_2$

• Effect of Neighbors for a 25 year-old:

$$(\widehat{\alpha} + \widehat{\beta}_1 25 + \widehat{\beta}_2) - (\widehat{\alpha} + \widehat{\beta}_1 25)$$

$$\widehat{Y}_i = \widehat{\alpha} + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i$$

	Control ($Z_i = 0$)	Neighbors ($Z_i = 1$)
25 year-old ($X_i = 25$)	$\widehat{\alpha} + \widehat{\beta_1} \cdot 25$	$\widehat{\alpha} + \widehat{\beta}_1 \cdot 25 + \widehat{\beta}_2$
26 year-old($X_i = 26$)	$\widehat{\alpha} + \widehat{\beta_1} \cdot 26$	$\widehat{\alpha} + \widehat{\beta}_1 \cdot 26 + \widehat{\beta}_2$

• Effect of Neighbors for a 25 year-old:

$$(\widehat{\alpha} + \widehat{\beta}_1 25 + \widehat{\beta}_2) - (\widehat{\alpha} + \widehat{\beta}_1 25) = \widehat{\beta}_2$$

$$\widehat{Y}_i = \widehat{\alpha} + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i$$

	Control ($Z_i = 0$)	Neighbors ($Z_i = 1$)
25 year-old ($X_i = 25$)	$\widehat{\alpha} + \widehat{\beta_1} \cdot 25$	$\widehat{\alpha} + \widehat{\beta}_1 \cdot 25 + \widehat{\beta}_2$
26 year-old($X_i = 26$)	$\widehat{\alpha} + \widehat{\beta}_1 \cdot 26$	$\widehat{\alpha} + \widehat{\beta}_1 \cdot 26 + \widehat{\beta}_2$

• Effect of Neighbors for a 25 year-old:

$$(\widehat{\alpha} + \widehat{\beta}_1 25 + \widehat{\beta}_2) - (\widehat{\alpha} + \widehat{\beta}_1 25) = \widehat{\beta}_2$$

• Effect of Neighbors for a 26 year-old:

$$\widehat{Y}_i = \widehat{\alpha} + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i$$

	Control ($Z_i = 0$)	Neighbors ($Z_i = 1$)
25 year-old ($X_i = 25$)	$\widehat{\alpha} + \widehat{\beta_1} \cdot 25$	$\widehat{\alpha} + \widehat{\beta}_1 \cdot 25 + \widehat{\beta}_2$
26 year-old($X_i = 26$)	$\widehat{\alpha} + \widehat{\beta}_1 \cdot 26$	$\widehat{\alpha} + \widehat{\beta}_1 \cdot 26 + \widehat{\beta}_2$

• Effect of Neighbors for a 25 year-old:

$$(\widehat{\alpha} + \widehat{\beta}_1 25 + \widehat{\beta}_2) - (\widehat{\alpha} + \widehat{\beta}_1 25) = \widehat{\beta}_2$$

• Effect of Neighbors for a 26 year-old:

$$(\widehat{\alpha} + \widehat{\beta}_1 26 + \widehat{\beta}_2) - (\widehat{\alpha} + \widehat{\beta}_1 26)$$

• Let
$$X_i = age_i$$
 and $Z_i = neighbors_i$:

$$\widehat{Y}_i = \widehat{\alpha} + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i$$

	Control ($Z_i = 0$)	Neighbors ($Z_i = 1$)
25 year-old ($X_i = 25$)	$\widehat{\alpha} + \widehat{\beta_1} \cdot 25$	$\widehat{\alpha} + \widehat{\beta}_1 \cdot 25 + \widehat{\beta}_2$
26 year-old($X_i = 26$)	$\widehat{\alpha} + \widehat{\beta}_1 \cdot 26$	$\widehat{\alpha} + \widehat{\beta}_1 \cdot 26 + \widehat{\beta}_2$

• Effect of Neighbors for a 25 year-old:

$$(\widehat{\alpha} + \widehat{\beta}_1 25 + \widehat{\beta}_2) - (\widehat{\alpha} + \widehat{\beta}_1 25) = \widehat{\beta}_2$$

• Effect of Neighbors for a 26 year-old:

$$(\widehat{\alpha} + \widehat{\beta}_1 26 + \widehat{\beta}_2) - (\widehat{\alpha} + \widehat{\beta}_1 26) = \widehat{\beta}_2$$
Visualizing the regression

Visualizing the regression

Visualizing the regression

$$\widehat{Y}_i = \widehat{\alpha} + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i + \widehat{\beta}_3 X_i Z_i$$

$$\widehat{Y}_i = \widehat{\alpha} + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i + \widehat{\beta}_3 X_i Z_i$$

	Control ($Z_i = 0$)	Neighbors ($Z_i = 1$)
25 year-old ($X_i = 25$)		
26 year-old($X_i = 26$)		

$$\widehat{Y}_i = \widehat{\alpha} + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i + \widehat{\beta}_3 X_i Z_i$$

	Control ($Z_i = 0$)	Neighbors ($Z_i = 1$)
25 year-old ($X_i = 25$)	$\widehat{\alpha} + \widehat{\beta}_1 \cdot 25 + \widehat{\beta}_2 0 + \widehat{\beta}_3 \cdot 25 \cdot 0$	
26 year-old($X_i = 26$)		

$$\widehat{Y}_i = \widehat{\alpha} + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i + \widehat{\beta}_3 X_i Z_i$$

	Control ($Z_i = 0$)	Neighbors ($Z_i = 1$)
25 year-old ($X_i = 25$)	$\widehat{\alpha} + \widehat{\beta}_1 \cdot 25$	
26 year-old($X_i = 26$)		

$$\widehat{Y}_i = \widehat{\alpha} + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i + \widehat{\beta}_3 X_i Z_i$$

	Control ($Z_i = 0$)	Neighbors ($Z_i = 1$)
25 year-old ($X_i = 25$)	$\widehat{\alpha} + \widehat{\beta}_1 \cdot 25$	$\widehat{\alpha} + \widehat{\beta}_1 \cdot 25 + \widehat{\beta}_2 1 + \widehat{\beta}_3 \cdot 25 \cdot 1$
26 year-old($X_i = 26$)		

$$\widehat{Y}_i = \widehat{\alpha} + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i + \widehat{\beta}_3 X_i Z_i$$

	Control ($Z_i = 0$)	Neighbors ($Z_i = 1$)
25 year-old ($X_i = 25$)	$\widehat{\alpha} + \widehat{\beta}_1 \cdot 25$	$\widehat{\alpha} + \widehat{\beta}_1 \cdot 25 + \widehat{\beta}_2 + \widehat{\beta}_3 \cdot 25$
26 year-old($X_i = 26$)		

$$\widehat{Y}_i = \widehat{\alpha} + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i + \widehat{\beta}_3 X_i Z_i$$

	Control ($Z_i = 0$)	Neighbors ($Z_i = 1$)
25 year-old ($X_i = 25$)	$\widehat{\alpha} + \widehat{\beta}_1 \cdot 25$	$\widehat{\alpha} + \widehat{\beta}_1 \cdot 25 + \widehat{\beta}_2 + \widehat{\beta}_3 \cdot 25$
26 year-old($X_i = 26$)	$\widehat{\alpha} + \widehat{\beta}_1 \cdot 26$	

$$\widehat{Y}_i = \widehat{\alpha} + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i + \widehat{\beta}_3 X_i Z_i$$

	Control ($Z_i = 0$)	Neighbors ($Z_i = 1$)
25 year-old ($X_i = 25$)	$\widehat{\alpha} + \widehat{\beta}_1 \cdot 25$	$\widehat{\alpha} + \widehat{\beta}_1 \cdot 25 + \widehat{\beta}_2 + \widehat{\beta}_3 \cdot 25$
26 year-old($X_i = 26$)	$\widehat{\alpha} + \widehat{\beta}_1 \cdot 26$	$\widehat{\alpha} + \widehat{\beta}_1 \cdot 26 + \widehat{\beta}_2 + \widehat{\beta}_3 \cdot 26$

$$\widehat{Y}_i = \widehat{\alpha} + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i + \widehat{\beta}_3 X_i Z_i$$

	Control ($Z_i = 0$)	Neighbors ($Z_i = 1$)
25 year-old ($X_i = 25$)	$\widehat{\alpha} + \widehat{\beta}_1 \cdot 25$	$\widehat{\alpha} + \widehat{\beta}_1 \cdot 25 + \widehat{\beta}_2 + \widehat{\beta}_3 \cdot 25$
26 year-old($X_i = 26$)	$\widehat{\alpha} + \widehat{\beta}_1 \cdot 26$	$\widehat{\alpha} + \widehat{\beta}_1 \cdot 26 + \widehat{\beta}_2 + \widehat{\beta}_3 \cdot 26$

• Effect of Neighbors for a 25 year-old:

$$\widehat{Y}_i = \widehat{\alpha} + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i + \widehat{\beta}_3 X_i Z_i$$

	Control ($Z_i = 0$)	Neighbors ($Z_i = 1$)
25 year-old ($X_i = 25$)	$\widehat{\alpha} + \widehat{\beta}_1 \cdot 25$	$\widehat{\alpha} + \widehat{\beta}_1 \cdot 25 + \widehat{\beta}_2 + \widehat{\beta}_3 \cdot 25$
26 year-old($X_i = 26$)	$\widehat{\alpha} + \widehat{\beta}_1 \cdot 26$	$\widehat{\alpha} + \widehat{\beta}_1 \cdot 26 + \widehat{\beta}_2 + \widehat{\beta}_3 \cdot 26$

• Effect of Neighbors for a 25 year-old: $(\widehat{\alpha} + \widehat{\beta}_1 25 + \widehat{\beta}_2 + \widehat{\beta}_3 \cdot 25) - (\widehat{\alpha} + \widehat{\beta}_1 25)$

$$\widehat{Y}_i = \widehat{\alpha} + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i + \widehat{\beta}_3 X_i Z_i$$

	Control ($Z_i = 0$)	Neighbors ($Z_i = 1$)
25 year-old ($X_i = 25$)	$\widehat{\alpha} + \widehat{\beta}_1 \cdot 25$	$\widehat{\alpha} + \widehat{\beta}_1 \cdot 25 + \widehat{\beta}_2 + \widehat{\beta}_3 \cdot 25$
26 year-old($X_i = 26$)	$\widehat{\alpha} + \widehat{\beta_1} \cdot 26$	$\widehat{\alpha} + \widehat{\beta}_1 \cdot 26 + \widehat{\beta}_2 + \widehat{\beta}_3 \cdot 26$

• Effect of Neighbors for a 25 year-old: $(\widehat{\alpha} + \widehat{\beta}_1 25 + \widehat{\beta}_2 + \widehat{\beta}_3 \cdot 25) - (\widehat{\alpha} + \widehat{\beta}_1 25) = \widehat{\beta}_2 + \widehat{\beta}_3 \cdot 25$

$$\widehat{Y}_i = \widehat{\alpha} + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i + \widehat{\beta}_3 X_i Z_i$$

	Control ($Z_i = 0$)	Neighbors ($Z_i = 1$)
25 year-old ($X_i = 25$)	$\widehat{\alpha} + \widehat{\beta}_1 \cdot 25$	$\widehat{\alpha} + \widehat{\beta}_1 \cdot 25 + \widehat{\beta}_2 + \widehat{\beta}_3 \cdot 25$
26 year-old($X_i = 26$)	$\widehat{\alpha} + \widehat{\beta_1} \cdot 26$	$\widehat{\alpha} + \widehat{\beta}_1 \cdot 26 + \widehat{\beta}_2 + \widehat{\beta}_3 \cdot 26$

• Effect of Neighbors for a 25 year-old: $(\widehat{\alpha} + \widehat{\beta}_1 25 + \widehat{\beta}_2 + \widehat{\beta}_3 \cdot 25) - (\widehat{\alpha} + \widehat{\beta}_1 25) = \widehat{\beta}_2 + \widehat{\beta}_3 \cdot 25$

Effect of Neighbors for a 26 year-old:

$$\widehat{Y}_i = \widehat{\alpha} + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i + \widehat{\beta}_3 X_i Z_i$$

	Control ($Z_i = 0$)	Neighbors ($Z_i = 1$)
25 year-old ($X_i = 25$)	$\widehat{\alpha} + \widehat{\beta}_1 \cdot 25$	$\widehat{\alpha} + \widehat{\beta}_1 \cdot 25 + \widehat{\beta}_2 + \widehat{\beta}_3 \cdot 25$
26 year-old($X_i = 26$)	$\widehat{\alpha} + \widehat{\beta_1} \cdot 26$	$\widehat{\alpha} + \widehat{\beta}_1 \cdot 26 + \widehat{\beta}_2 + \widehat{\beta}_3 \cdot 26$

• Effect of Neighbors for a 25 year-old: $(\widehat{\alpha} + \widehat{\beta}_1 25 + \widehat{\beta}_2 + \widehat{\beta}_3 \cdot 25) - (\widehat{\alpha} + \widehat{\beta}_1 25) = \widehat{\beta}_2 + \widehat{\beta}_3 \cdot 25$

• Effect of Neighbors for a 26 year-old: $(\hat{\alpha} + \hat{\beta}_1 26 + \hat{\beta}_2 + \hat{\beta}_3 \cdot 26) - (\hat{\alpha} + \hat{\beta}_1 26)$

$$\widehat{Y}_i = \widehat{\alpha} + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i + \widehat{\beta}_3 X_i Z_i$$

	Control ($Z_i = 0$)	Neighbors ($Z_i = 1$)
25 year-old ($X_i = 25$)	$\widehat{\alpha} + \widehat{\beta}_1 \cdot 25$	$\widehat{\alpha} + \widehat{\beta}_1 \cdot 25 + \widehat{\beta}_2 + \widehat{\beta}_3 \cdot 25$
26 year-old($X_i = 26$)	$\widehat{\alpha} + \widehat{\beta_1} \cdot 26$	$\widehat{\alpha} + \widehat{\beta}_1 \cdot 26 + \widehat{\beta}_2 + \widehat{\beta}_3 \cdot 26$

- Effect of Neighbors for a 25 year-old: $(\widehat{\alpha} + \widehat{\beta}_1 25 + \widehat{\beta}_2 + \widehat{\beta}_3 \cdot 25) - (\widehat{\alpha} + \widehat{\beta}_1 25) = \widehat{\beta}_2 + \widehat{\beta}_3 \cdot 25$
- Effect of Neighbors for a 26 year-old: $(\widehat{\alpha} + \widehat{\beta}_1 26 + \widehat{\beta}_2 + \widehat{\beta}_3 \cdot 26) - (\widehat{\alpha} + \widehat{\beta}_1 26) = \widehat{\beta}_2 + \widehat{\beta}_3 \cdot 26$

$$\widehat{Y}_i = \widehat{\alpha} + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i + \widehat{\beta}_3 X_i Z_i$$

	Control ($Z_i = 0$)	Neighbors ($Z_i = 1$)
25 year-old ($X_i = 25$)	$\widehat{\alpha} + \widehat{\beta}_1 \cdot 25$	$\widehat{\alpha} + \widehat{\beta}_1 \cdot 25 + \widehat{\beta}_2 + \widehat{\beta}_3 \cdot 25$
26 year-old($X_i = 26$)	$\widehat{\alpha} + \widehat{\beta}_1 \cdot 26$	$\widehat{\alpha} + \widehat{\beta}_1 \cdot 26 + \widehat{\beta}_2 + \widehat{\beta}_3 \cdot 26$

• Effect of Neighbors for a 25 year-old: $(\widehat{\alpha} + \widehat{\beta}_1 25 + \widehat{\beta}_2 + \widehat{\beta}_3 \cdot 25) - (\widehat{\alpha} + \widehat{\beta}_1 25) = \widehat{\beta}_2 + \widehat{\beta}_3 \cdot 25$

• Effect of Neighbors for a 26 year-old: $(\widehat{\alpha} + \widehat{\beta}_1 26 + \widehat{\beta}_2 + \widehat{\beta}_3 \cdot 26) - (\widehat{\alpha} + \widehat{\beta}_1 26) = \widehat{\beta}_2 + \widehat{\beta}_3 \cdot 26$

• Effect of Neighbors for a x year-old: $\widehat{eta}_2 + \widehat{eta}_3 \cdot x$

Visualizing the interaction

$$\widehat{Y}_i = \widehat{\alpha} + \widehat{\beta}_1 age_i + \widehat{\beta}_2 neighbors_i + \widehat{\beta}_3 (age_i \times neighbors_i)$$

• $\hat{\alpha}$: average turnout for 0 year-olds in the control group.

$$\widehat{Y}_i = \widehat{\alpha} + \widehat{\beta}_1 \text{age}_i + \widehat{\beta}_2 \text{neighbors}_i + \widehat{\beta}_3 (\text{age}_i \times \text{neighbors}_i)$$

- $\hat{\alpha}$: average turnout for 0 year-olds in the control group.
- $\widehat{\beta}_1$: slope of regression line for age in the control group.

$$\widehat{Y}_i = \widehat{\alpha} + \widehat{\beta}_1 \text{age}_i + \widehat{\beta}_2 \text{neighbors}_i + \widehat{\beta}_3 (\text{age}_i \times \text{neighbors}_i)$$

- $\hat{\alpha}$: average turnout for 0 year-olds in the control group.
- $\widehat{\beta}_1$: slope of regression line for age in the control group.
- $\hat{\beta}_2$: average effect of Neighbors mailer for 0 year-olds.

 $\widehat{Y}_i = \widehat{\alpha} + \widehat{\beta}_1 \text{age}_i + \widehat{\beta}_2 \text{neighbors}_i + \widehat{\beta}_3 (\text{age}_i \times \text{neighbors}_i)$

- $\hat{\alpha}$: average turnout for 0 year-olds in the control group.
- $\widehat{\beta}_1$: slope of regression line for age in the control group.
- $\hat{\beta}_2$: average effect of Neighbors mailer for 0 year-olds.
- $\hat{\beta}_3$: change in the **effect** of the Neighbors mailer for a 1-year increase in age.

 $\widehat{Y}_i = \widehat{\alpha} + \widehat{\beta}_1 \text{age}_i + \widehat{\beta}_2 \text{neighbors}_i + \widehat{\beta}_3 (\text{age}_i \times \text{neighbors}_i)$

- $\widehat{\alpha}$: average turnout for 0 year-olds in the control group.
- $\widehat{\beta}_1$: slope of regression line for age in the control group.
- $\hat{\beta}_2$: average effect of Neighbors mailer for 0 year-olds.
- $\hat{\beta}_3$: change in the **effect** of the Neighbors mailer for a 1-year increase in age.

• Effect for x year-olds:
$$\hat{\beta}_2 + \hat{\beta}_3 \cdot x$$

 $\hat{Y}_i = \hat{\alpha} + \hat{\beta}_1 \text{age}_i + \hat{\beta}_2 \text{neighbors}_i + \hat{\beta}_3 (\text{age}_i \times \text{neighbors}_i)$

- $\hat{\alpha}$: average turnout for 0 year-olds in the control group.
- $\widehat{\beta}_1$: slope of regression line for age in the control group.
- $\hat{\beta}_2$: average effect of Neighbors mailer for 0 year-olds.
- $\hat{\beta}_3$: change in the **effect** of the Neighbors mailer for a 1-year increase in age.

 - Effect for x year-olds: β₂ + β₃ · x
 Effect for (x + 1) year-olds: β₂ + β₃ · (x + 1)

 $\hat{Y}_i = \hat{\alpha} + \hat{\beta}_1 \text{age}_i + \hat{\beta}_2 \text{neighbors}_i + \hat{\beta}_3 (\text{age}_i \times \text{neighbors}_i)$

- $\hat{\alpha}$: average turnout for 0 year-olds in the control group.
- $\widehat{\beta}_1$: slope of regression line for age in the control group.
- $\hat{\beta}_2$: average effect of Neighbors mailer for 0 year-olds.
- $\hat{\beta}_3$: change in the **effect** of the Neighbors mailer for a 1-year increase in age.

 - ► Effect for x year-olds: $\hat{\beta}_2 + \hat{\beta}_3 \cdot x$ ► Effect for (x + 1) year-olds: $\hat{\beta}_2 + \hat{\beta}_3 \cdot (x + 1)$
 - Change in effect: $\hat{\beta}_3$

• You can use the : way to create interaction terms like last time:

• You can use the : way to create interaction terms like last time:

0.000628

##

• You can use the : way to create interaction terms like last time:

int.fit <- lm(primary2006 ~ age + neighbors + age:neighbors, data = social.neighbors)					
coe	coef(int.fit)				
##	(Intercept)	age	neighbors		
##	0.097473	0.003998	0.049829		
##	age:neighbors				

0.000628

##

• You can use the : way to create interaction terms like last time:

int	int.fit <- lm(primary2006 ~ age + neighbors + age:neighbors, data = social.neighbors)				
coe	coef(int.fit)				
##	(Intercept)	age	neighbors		
##	0.097473	0.003998	0.049829		
##	age·neighbors				

 Or you can use the var1 * var2 shortcut, which will add both variable and their interaction:

• You can use the : way to create interaction terms like last time:

0.000628

 Or you can use the var1 * var2 shortcut, which will add both variable and their interaction:

```
int.fit2 <- lm(primary2006 ~ age * neighbors, data = social.neighbors)
coef(int.fit2)</pre>
```

age:neighbors

0.000628

##

• You can use the : way to create interaction terms like last time:

int.fit <- lm(primary2006 ~ age + neighbors + age:neighbors, data = social.neighbors)					
coef	coef(int.fit)				
##	(Intercept)	age	neighbors		
##	0.097473	0.003998	0.049829		

• Or you can use the **var1** * **var2** shortcut, which will add both variable and their interaction:

<pre>int.fit2 <- lm(primary2006 ~ age * neighbors, data = social.neighbors) coef(int.fit2)</pre>					
## ##	(Intercept) 0.097473	age 0.003998	neighbors 0.049829		
##	age:neighbors				
##	0.000628				

General interpretation of interactions

$$\widehat{Y}_i = \widehat{\alpha} + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i + \widehat{\beta}_3 X_i Z_i$$

• $\widehat{\alpha}$: average outcome when X_i and Z_i are 0.

General interpretation of interactions

$$\widehat{Y}_i = \widehat{\alpha} + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i + \widehat{\beta}_3 X_i Z_i$$

- $\widehat{\alpha}$: average outcome when X_i and Z_i are 0.
- $\hat{\beta}_1$: average change in Y_i of a one-unit change in X_i when $Z_i = 0$

General interpretation of interactions

$$\widehat{Y}_i = \widehat{\alpha} + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i + \widehat{\beta}_3 X_i Z_i$$

- $\hat{\alpha}$: average outcome when X_i and Z_i are 0.
- $\hat{\beta}_1$: average change in Y_i of a one-unit change in X_i when $Z_i = 0$
- $\hat{\beta}_2$: average change in Y_i of a one-unit change in Z_i when $X_i = 0$
$$\widehat{Y}_i = \widehat{\alpha} + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i + \widehat{\beta}_3 X_i Z_i$$

- $\hat{\alpha}$: average outcome when X_i and Z_i are 0.
- $\hat{\beta}_1$: average change in Y_i of a one-unit change in X_i when $Z_i = 0$
- $\hat{\beta}_2$: average change in Y_i of a one-unit change in Z_i when $X_i = 0$
- $\hat{\beta}_3$ has two equivalent interpretations:

$$\widehat{Y}_i = \widehat{\alpha} + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i + \widehat{\beta}_3 X_i Z_i$$

- $\hat{\alpha}$: average outcome when X_i and Z_i are 0.
- $\hat{\beta}_1$: average change in Y_i of a one-unit change in X_i when $Z_i = 0$
- $\hat{\beta}_2$: average change in Y_i of a one-unit change in Z_i when $X_i = 0$
- $\hat{\beta}_3$ has two equivalent interpretations:
 - Change in the effect/slope of X_i for a one-unit change in Z_i

$$\widehat{Y}_i = \widehat{\alpha} + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i + \widehat{\beta}_3 X_i Z_i$$

- $\hat{\alpha}$: average outcome when X_i and Z_i are 0.
- $\hat{\beta}_1$: average change in Y_i of a one-unit change in X_i when $Z_i = 0$
- $\hat{\beta}_2$: average change in Y_i of a one-unit change in Z_i when $X_i = 0$
- $\widehat{\beta}_3$ has two equivalent interpretations:
 - Change in the effect/slope of X_i for a one-unit change in Z_i
 - Change in the effect/slope of Z_i for a one-unit change in X_i

$\widehat{Y}_i = \widehat{\alpha} + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i + \widehat{\beta}_3 X_i Z_i$

- $\hat{\alpha}$: average outcome when X_i and Z_i are 0.
- $\hat{\beta}_1$: average change in Y_i of a one-unit change in X_i when $Z_i = 0$
- $\hat{\beta}_2$: average change in Y_i of a one-unit change in Z_i when $X_i = 0$
- $\widehat{\beta}_3$ has two equivalent interpretations:
 - Change in the effect/slope of X_i for a one-unit change in Z_i
 - Change in the effect/slope of Z_i for a one-unit change in X_i
- These hold no matter what types of variables they are!

3/ Non-linear relationships

Linear regression are linear

$$\widehat{Y}_i = \widehat{\alpha} + \widehat{\beta}_1 X_i$$

$$\widehat{Y}_i = \widehat{\alpha} + \widehat{\beta}_1 X_i$$

• Standard linear regression can only pick up **linear** relationships.

$$\widehat{Y}_i = \widehat{\alpha} + \widehat{\beta}_1 X_i$$

- Standard linear regression can only pick up linear relationships.
- What if the relationship between X_i and Y_i is non-linear?

• If we want to allow for non-linearity in age, we can add a squared term to the regression model:

• If we want to allow for non-linearity in age, we can add a squared term to the regression model:

$$\widehat{Y}_i = \widehat{\alpha} + \widehat{\beta}_1 \operatorname{age}_i + \widehat{\beta}_2 \left(\operatorname{age}_i^2 \right)$$

• If we want to allow for non-linearity in age, we can add a squared term to the regression model:

$$\widehat{Y}_i = \widehat{\alpha} + \widehat{\beta}_1 \operatorname{age}_i + \widehat{\beta}_2 \left(\operatorname{age}_i^2 \right)$$

• We are now fitting a **parabola** to the data.

 If we want to allow for non-linearity in age, we can add a squared term to the regression model:

$$\widehat{Y}_i = \widehat{\alpha} + \widehat{\beta}_1 \operatorname{age}_i + \widehat{\beta}_2 \left(\operatorname{age}_i^2 \right)$$

- We are now fitting a **parabola** to the data.
- In R, we can add a squared term, but we need to wrap it in I():

• If we want to allow for non-linearity in age, we can add a squared term to the regression model:

$$\widehat{Y}_i = \widehat{\alpha} + \widehat{\beta}_1 \operatorname{age}_i + \widehat{\beta}_2 \left(\operatorname{age}_i^2 \right)$$

- We are now fitting a **parabola** to the data.
- In R, we can add a squared term, but we need to wrap it in I():

fit.sq <- lm(primary2006 ~ age + I(age^2), data = social)
coef(fit.sq)
(Intercept) age I(age^2)
-0.0816804 0.0122736 -0.0000808</pre>

• If we want to allow for non-linearity in age, we can add a squared term to the regression model:

$$\widehat{Y}_i = \widehat{\alpha} + \widehat{\beta}_1 \operatorname{age}_i + \widehat{\beta}_2 \left(\operatorname{age}_i^2 \right)$$

- We are now fitting a **parabola** to the data.
- In R, we can add a squared term, but we need to wrap it in I():

fit.sq <- lm(primary2006 ~ age + I(age²), data = social)
coef(fit.sq)

(Intercept) age I(age^2)
-0.0816804 0.0122736 -0.0000808

• $\hat{\beta}_2$: how the effect of age increases as age increases.

• We can get predicted values out of R using the predict() function:

• We can get predicted values out of R using the predict() function:

predict(fit.sq, newdata = list(age = c(20, 21, 22)))

• We can get predicted values out of R using the predict() function:

predict(fit.sq, newdata = list(age = c(20, 21, 22)))
1 2 3

0.131 0.140 0.149

• We can get predicted values out of R using the predict() function:

predict(fit.sq, newdata = list(age = c(20, 21, 22)))

- ## 1 2 3 ## 0.131 0.140 0.149
 - Create a vector of ages to predict and save predictions:

• We can get predicted values out of R using the predict() function:

predict(fit.sq, newdata = list(age = c(20, 21, 22)))

1 2 3 ## 0.131 0.140 0.149

• Create a vector of ages to predict and save predictions:

age.vals <- 20:85 age.preds <- predict(fit.sq, newdata = list(age = age.vals))

• We can get predicted values out of R using the predict() function:

predict(fit.sq, newdata = list(age = c(20, 21, 22)))

1 2 3 ## 0.131 0.140 0.149

• Create a vector of ages to predict and save predictions:

age.vals <- 20:85 age.preds <- predict(fit.sq, newdata = list(age = age.vals))

Plot the predictions:

Plotting predicted values

If you want to connect the dots in your scatterplot, you can use the type = "l" ("line" type):

Plotting predicted values

Comparing to linear fit

• Diagnosing nonlinearity can be easy with a single variable: just plot the scatterplot.

- Diagnosing nonlinearity can be easy with a single variable: just plot the scatterplot.
- With multiple variables, harder to diagnose.

- Diagnosing nonlinearity can be easy with a single variable: just plot the scatterplot.
- With multiple variables, harder to diagnose.
- One useful tool: plotting residuals on y-axis versus variables with suspected nonlinearities on the x-axis.

- Diagnosing nonlinearity can be easy with a single variable: just plot the scatterplot.
- With multiple variables, harder to diagnose.
- One useful tool: plotting residuals on y-axis versus variables with suspected nonlinearities on the x-axis.
- Example: my weight again

- Diagnosing nonlinearity can be easy with a single variable: just plot the scatterplot.
- With multiple variables, harder to diagnose.
- One useful tool: plotting residuals on y-axis versus variables with suspected nonlinearities on the x-axis.
- Example: my weight again

health <- read.csv("data/health2017.csv")
w.fit <- lm(weight ~ steps.lag + dayofyear, data = health)</pre>

Residual plot

w.f	Fit.sq <- lm(weight data = ef(w.fit.sq)	~ steps.lag + health)	dayofyear +	I(dayofyear^2)
## ## ## ##	(Intercept) 177.4679 I(dayofyear^2) 0.0024	steps.lag 0.0521	dayofyear -0.4439	

w.f	fit.sq <- lm(weight data =	~ steps.lag health)	+ dayofyear +	I(dayofyear^2)				
<pre>coef(w.fit.sq)</pre>								
## ## ## ##	(Intercept) 177.4679 I(dayofyear^2) 0.0024	steps.lag 0.0521	dayofyear -0.4439					
<pre>plot(health\$steps.lag, residuals(w.fit.sq),</pre>								

Residual plot, redux

4 Causality and regression wrap up

• When can we interpret a regression coefficient causally?
- When can we interpret a regression coefficient causally?
- Randomized control trial:

- When can we interpret a regression coefficient causally?
- Randomized control trial:
 - Coefficient on binary treatment is estimate of the SATE

- When can we interpret a regression coefficient causally?
- Randomized control trial:
 - Coefficient on binary treatment is estimate of the SATE
 - True even if we add other independent variables.

- When can we interpret a regression coefficient causally?
- Randomized control trial:
 - Coefficient on binary treatment is estimate of the SATE
 - True even if we add other independent variables.
 - Other independent variables not causal

- When can we interpret a regression coefficient causally?
- Randomized control trial:
 - Coefficient on binary treatment is estimate of the SATE
 - True even if we add other independent variables.
 - Other independent variables not causal
- Observational studies:

- When can we interpret a regression coefficient causally?
- Randomized control trial:
 - Coefficient on binary treatment is estimate of the SATE
 - True even if we add other independent variables.
 - Other independent variables not causal
- Observational studies:
 - Can only interpret coefficients as causal effect if we have controlled for all confounders as additional independent variables.

- When can we interpret a regression coefficient causally?
- Randomized control trial:
 - Coefficient on binary treatment is estimate of the SATE
 - True even if we add other independent variables.
 - Other independent variables not causal
- Observational studies:
 - Can only interpret coefficients as causal effect if we have controlled for all confounders as additional independent variables.
 - Confounders: other variables that cause both treatment and outcome.

• When can we interpret a regression coefficient causally?

- Randomized control trial:
 - Coefficient on binary treatment is estimate of the SATE
 - True even if we add other independent variables.
 - Other independent variables not causal
- Observational studies:
 - Can only interpret coefficients as causal effect if we have controlled for all confounders as additional independent variables.
 - Confounders: other variables that cause both treatment and outcome.
 - Before/after and diff-in-diff designs can be implemented with regression, too.

• Everything up to this point: getting estimates.

- Everything up to this point: getting estimates.
- How much uncertainty should we have about our estimates?

- Everything up to this point: getting estimates.
- How much uncertainty should we have about our estimates?
 - Could we have seen this regression coefficient by chance alone?

- Everything up to this point: getting estimates.
- How much uncertainty should we have about our estimates?
 - Could we have seen this regression coefficient by chance alone?
- Next part of class: quantifying uncertainty.

- Everything up to this point: getting estimates.
- How much uncertainty should we have about our estimates?
 - Could we have seen this regression coefficient by chance alone?
- Next part of class: quantifying uncertainty.
 - First stop: probability, the mathematical language of uncertainty.