Gov 50: 3. Causality

Matthew Blackwell

Harvard University

Fall 2018

1. Today's agenda

2. Data

3. Causality

4. Assignment

1/ Today's agenda

DataCamp assignments

- What you've been doing:
 - DataCamp assignments
 - Reading on Perusall (great job!)

- What you've been doing:
 - DataCamp assignments
 - Reading on Perusall (great job!)
 - Asking questions on Canvas

- DataCamp assignments
- Reading on Perusall (great job!)
- Asking questions on Canvas
- Getting set up with RStudio Cloud

- DataCamp assignments
- Reading on Perusall (great job!)
- Asking questions on Canvas
- Getting set up with RStudio Cloud
- Looking at Google Calendar for class

- DataCamp assignments
- Reading on Perusall (great job!)
- Asking questions on Canvas
- Getting set up with RStudio Cloud
- Looking at Google Calendar for class
- Sections start this week:

- DataCamp assignments
- Reading on Perusall (great job!)
- Asking questions on Canvas
- Getting set up with RStudio Cloud
- Looking at Google Calendar for class
- Sections start this week:
 - Friday, 1:30-2:30pm

- DataCamp assignments
- Reading on Perusall (great job!)
- Asking questions on Canvas
- Getting set up with RStudio Cloud
- Looking at Google Calendar for class
- Sections start this week:
 - Friday, 1:30-2:30pm
 - Friday, 3-4pm

- What you've been doing:
 - DataCamp assignments
 - Reading on Perusall (great job!)
 - Asking questions on Canvas
 - Getting set up with RStudio Cloud
 - Looking at Google Calendar for class
- Sections start this week:
 - Friday, 1:30-2:30pm
 - Friday, 3-4pm
 - Monday, 6-7pm (taped for Extension School)

- DataCamp assignments
- Reading on Perusall (great job!)
- Asking questions on Canvas
- Getting set up with RStudio Cloud
- Looking at Google Calendar for class
- Sections start this week:
 - Friday, 1:30-2:30pm
 - Friday, 3-4pm
 - Monday, 6-7pm (taped for Extension School)
 - Possibly more options to come

- DataCamp assignments
- Reading on Perusall (great job!)
- Asking questions on Canvas
- Getting set up with RStudio Cloud
- Looking at Google Calendar for class
- Sections start this week:
 - Friday, 1:30-2:30pm
 - 🕨 Friday, 3-4pm
 - Monday, 6-7pm (taped for Extension School)
 - Possibly more options to come
- First HW goes out today, due Thursday 9/20

1. Criminal record experiment

- 1. Criminal record experiment
 - More practice working with data in R

- 1. Criminal record experiment
 - More practice working with data in R
- 2. Causality

- 1. Criminal record experiment
 - More practice working with data in R
- 2. Causality
 - Counterfactuals

- 1. Criminal record experiment
 - More practice working with data in R
- 2. Causality
 - Counterfactuals
 - Fundamental problem of causal inference

2/ Data

• Does having a criminal record affect job prospects?

- Does having a criminal record affect job prospects?
- Experimental setting:

- Does having a criminal record affect job prospects?
- Experimental setting:
 - Randomly assign 4 hired "confederates" (2 white, 2 black) to apply to different jobs in Milwaukee.

- Does having a criminal record affect job prospects?
- Experimental setting:
 - Randomly assign 4 hired "confederates" (2 white, 2 black) to apply to different jobs in Milwaukee.
 - Men were matched on physical appearance, self-presentation, age, etc.

- Does having a criminal record affect job prospects?
- Experimental setting:
 - Randomly assign 4 hired "confederates" (2 white, 2 black) to apply to different jobs in Milwaukee.
 - Men were matched on physical appearance, self-presentation, age, etc.
 - Confederates would alternate indicating they had a criminal record.

- Does having a criminal record affect job prospects?
- Experimental setting:
 - Randomly assign 4 hired "confederates" (2 white, 2 black) to apply to different jobs in Milwaukee.
 - Men were matched on physical appearance, self-presentation, age, etc.
 - Confederates would alternate indicating they had a criminal record.
- Outcome of interest: receiving a callback from a potential employer.

• Data	a file: crimina Name	lrecord.csv Description
	jobid	Job ID number
	callback	1 if tester received a callback, 0 if the tester did not receive a callback.
	black	1 if the tester is black, 0 if the tester is white.
	crimrec	1 if the tester has a criminal record, 0 if the tester
		does not.
	interact	1 if tester interacted with employer during the job application, 0 if tester does not interact with em-
		ployer.
	city	1 is job is located in the city center, 0 if job is lo- cated in the suburbs.
	distance	Job's average distance to downtown.

audit <- read.csv("data/criminalrecord.csv")</pre>

dim(audit)

audit <- read.csv("data/criminalrecord.csv")</pre>

dim(audit)

[1] 696 7

audit <- read.csv("data/criminalrecord.csv")</pre>

dim(audit)

[1] 696 7

head(audit)

audit <- read.csv("data/criminalrecord.csv")</pre>

dim(audit)

[1] 696 7

head(audit)

##		jobid	callback	black	crimrec	interact	city	distance
##	1	108	1	Θ	1	1	Θ	15
##	2	113	Θ	Θ	Θ	1	0	20
##	3	101	1	Θ	Θ	Θ	0	15
##	4	64	1	Θ	Θ	Θ	1	7
##	5	33	Θ	Θ	1	Θ	1	5
##	6	73	Θ	Θ	1	Θ	1	10

• Units: objects being studied.

• Units: objects being studied.

Usually the rows of the data set.

- Units: objects being studied.
 - Usually the rows of the data set.
 - Survey respondents, countries, counties, members of congress, etc.

- Units: objects being studied.
 - Usually the rows of the data set.
 - Survey respondents, countries, counties, members of congress, etc.
 - Today's data: job applications.

- Units: objects being studied.
 - Usually the rows of the data set.
 - Survey respondents, countries, counties, members of congress, etc.
 - Today's data: job applications.
- Variables: measurements that can vary across units.

- Units: objects being studied.
 - Usually the rows of the data set.
 - Survey respondents, countries, counties, members of congress, etc.
 - Today's data: job applications.
- Variables: measurements that can vary across units.
 - Usually the columns of a data set.

- Units: objects being studied.
 - Usually the rows of the data set.
 - Survey respondents, countries, counties, members of congress, etc.
 - Today's data: job applications.
- Variables: measurements that can vary across units.
 - Usually the columns of a data set.
 - Political preferences, income, participation in an experiment.

Got a callback (1) or not (0)

- Got a callback (1) or not (0)
- Number of children: 0, 1, 2...

- Got a callback (1) or not (0)
- Number of children: 0, 1, 2...
- Support for policy on a 1-5 scale

- Got a callback (1) or not (0)
- Number of children: 0, 1, 2...
- Support for policy on a 1-5 scale
- Differences between values are fixed.

- Got a callback (1) or not (0)
- Number of children: 0, 1, 2...
- Support for policy on a 1-5 scale
- Differences between values are fixed.
- Continuous variable:

- Got a callback (1) or not (0)
- Number of children: 0, 1, 2...
- Support for policy on a 1-5 scale
- Differences between values are fixed.
- Continuous variable:
 - Age, income

- Got a callback (1) or not (0)
- Number of children: 0, 1, 2...
- Support for policy on a 1-5 scale
- Differences between values are fixed.

• Continuous variable:

- Age, income
- Differences between values aren't fixed and can be arbitrarily small.

5 > 10

5 > 10

[1] FALSE

5 > 10	
## [1]	FALSE
5 >= 5	

5 > 10	
## [1]	FALSE
5 >= 5	
## [1]	TRUE

[1] TRUE

head(audit\$crimrec)

head(audit\$crimrec)

[1] 1 0 0 0 1 1

head(audit\$crimrec)

[1] 1 0 0 0 1 1

head(audit\$crimrec == 1)

head(audit\$crimrec)

[1] 1 0 0 0 1 1

head(audit\$crimrec == 1)

[1] TRUE FALSE FALSE FALSE TRUE TRUE

• We can then use this logical vector to subset the data to only certain rows:

• We can then use this logical vector to subset the data to only certain rows:

criminalrecs <- audit[audit\$crimrec == 1,]</pre>

head(criminalrecs[, c("jobid", "callback", "black", "crimrec")])

• We can then use this logical vector to subset the data to only certain rows:

cr	<pre>criminalrecs <- audit[audit\$crimrec == 1,]</pre>										
<pre>head(criminalrecs[, c("jobid", "callback", "black", "crimrec")])</pre>											
##		jobid	callback	black	crimrec						
##	1	108	1	Θ	1						
##	5	33	Θ	Θ	1						
##	6	73	Θ	Θ	1						
##	7	4	Θ	Θ	1						
##	8	125	1	Θ	1						
##	10	110	Θ	Θ	1						

• We want to know the average callback rate for the criminal and non-criminal applications.

- We want to know the average callback rate for the criminal and non-criminal applications.
- First, we use the subset we already created and then make a second subset for the other condition:

- We want to know the average callback rate for the criminal and non-criminal applications.
- First, we use the subset we already created and then make a second subset for the other condition:

mean(criminalrecs\$callback)

- We want to know the average callback rate for the criminal and non-criminal applications.
- First, we use the subset we already created and then make a second subset for the other condition:

mean(criminalrecs\$callback)

[1] 0.101

- We want to know the average callback rate for the criminal and non-criminal applications.
- First, we use the subset we already created and then make a second subset for the other condition:

mean(criminalrecs\$callback)

[1] 0.101

noncriminalrecs <- audit[audit\$crimrec == 0,]
mean(noncriminalrecs\$callback)</pre>

- We want to know the average callback rate for the criminal and non-criminal applications.
- First, we use the subset we already created and then make a second subset for the other condition:

mean(criminalrecs\$callback)

[1] 0.101

noncriminalrecs <- audit[audit\$crimrec == 0,]
mean(noncriminalrecs\$callback)</pre>

[1] 0.226

- We want to know the average callback rate for the criminal and non-criminal applications.
- First, we use the subset we already created and then make a second subset for the other condition:

mean(criminalrecs\$callback)

[1] 0.101

noncriminalrecs <- audit[audit\$crimrec == 0,]
mean(noncriminalrecs\$callback)</pre>

[1] 0.226

• Much higher callback rate in the non-criminal-record group!

3/ Causality

Causal questions

• Does the minimum wage increase the unemployment rate?

• Does the minimum wage increase the unemployment rate?

Unemployment rate went up after the minimum wage increased

- Unemployment rate went up after the minimum wage increased
- Would the unemployment rate have gone up, had the minimum wage increase not occurred?

- Unemployment rate went up after the minimum wage increased
- Would the unemployment rate have gone up, had the minimum wage increase not occurred?
- Does race affect one's job prospect?

- Unemployment rate went up after the minimum wage increased
- Would the unemployment rate have gone up, had the minimum wage increase not occurred?
- Does race affect one's job prospect?
 - Jamal applied for a job but did not get it

- Unemployment rate went up after the minimum wage increased
- Would the unemployment rate have gone up, had the minimum wage increase not occurred?
- Does race affect one's job prospect?
 - Jamal applied for a job but did not get it
 - Would Jamal have gotten a job if he were white?

• Does the minimum wage increase the unemployment rate?

- Unemployment rate went up after the minimum wage increased
- Would the unemployment rate have gone up, had the minimum wage increase not occurred?
- Does race affect one's job prospect?
 - Jamal applied for a job but did not get it
 - Would Jamal have gotten a job if he were white?

Comparison between factual and counterfactual

- Unemployment rate went up after the minimum wage increased
- Would the unemployment rate have gone up, had the minimum wage increase not occurred?
- Does race affect one's job prospect?
 - Jamal applied for a job but did not get it
 - Would Jamal have gotten a job if he were white?

- Comparison between factual and counterfactual
- Fundamental problem of causal inference: We must infer counterfactual outcomes

- Unemployment rate went up after the minimum wage increased
- Would the unemployment rate have gone up, had the minimum wage increase not occurred?
- Does race affect one's job prospect?
 - Jamal applied for a job but did not get it
 - Would Jamal have gotten a job if he were white?

- Comparison between factual and counterfactual
- Fundamental problem of causal inference: We must infer counterfactual outcomes
- No causation without manipulation: immutable characteristics

 Seeing the fundamental problem of causal inference in a movie: Sliding Doors (1998) https://www.youtube.com/watch?v=BvUbv4iwbDs

audit[4:5, c("jobid", "callback", "crimrec")]

##		jobid	callback	crimrec	
##	4	64	1	Θ	
##	5	33	Θ	1	

• Did employer 33 not callback the applicant **because** they had a criminal record?

• **Unit** (indexed by *i*): job application for employer

- Unit (indexed by *i*): job application for employer
- **Treatment variable** (causal variable of interest) T_i : criminal record or not

- Unit (indexed by i): job application for employer
- **Treatment variable** (causal variable of interest) T_i : criminal record or not
- **Treatment group** (treated units): applications with criminal record

- Unit (indexed by i): job application for employer
- **Treatment variable** (causal variable of interest) T_i : criminal record or not
- Treatment group (treated units): applications with criminal record
- Control group (untreated units): applications without criminal record

- Unit (indexed by *i*): job application for employer
- **Treatment variable** (causal variable of interest) T_i : criminal record or not
- Treatment group (treated units): applications with criminal record
- Control group (untreated units): applications without criminal record
- **Outcome variable** (response variable) *Y*_i: callback

- Unit (indexed by i): job application for employer
- **Treatment variable** (causal variable of interest) T_i : criminal record or not
- Treatment group (treated units): applications with criminal record
- Control group (untreated units): applications without criminal record
- **Outcome variable** (response variable) *Y_i*: callback

	T_i (ex-felon)	Y_i (callback)
Ex-felon applicant	1	0
Non-ex-felon applicant	0	1

• What does " T_i causes Y_i " mean? \rightsquigarrow **counterfactuals**, "what if"

- What does " T_i causes Y_i " mean? \rightsquigarrow counterfactuals, "what if"
- Would the employer for application *i* have called back if the applicant didn't have a criminal record?

- What does " T_i causes Y_i " mean? \rightsquigarrow counterfactuals, "what if"
- Would the employer for application *i* have called back if the applicant didn't have a criminal record?
- Two potential outcomes:

- What does " T_i causes Y_i " mean? \rightsquigarrow counterfactuals, "what if"
- Would the employer for application *i* have called back if the applicant didn't have a criminal record?
- Two potential outcomes:
 - \succ $Y_i(1)$: would employer *i* callback if applicant is an ex-felon?

- What does "T_i causes Y_i" mean? → counterfactuals, "what if"
- Would the employer for application *i* have called back if the applicant didn't have a criminal record?
- Two potential outcomes:
 - Y_i(1): would employer *i* callback if applicant is an ex-felon?
 - Y_i(0): would employer *i* callback if applicant was **not** an ex-felon?

- What does " T_i causes Y_i " mean? \rightsquigarrow counterfactuals, "what if"
- Would the employer for application *i* have called back if the applicant didn't have a criminal record?
- Two potential outcomes:
 - Y_i(1): would employer *i* callback if applicant is an ex-felon?
 - Y_i(0): would employer *i* callback if applicant was **not** an ex-felon?
- Causal effect: $Y_i(1) Y_i(0)$

- What does " T_i causes Y_i " mean? \rightsquigarrow **counterfactuals**, "what if"
- Would the employer for application *i* have called back if the applicant didn't have a criminal record?
- Two potential outcomes:
 - Y_i(1): would employer *i* callback if applicant is an ex-felon?
 - > $Y_i(0)$: would employer *i* callback if applicant was **not** an ex-felon?
- Causal effect: $Y_i(1) Y_i(0)$
- Fundamental problem of causal inference: only one of the two potential outcomes is observable.

	T_i (ex-felon)	Y_i (callback)	$Y_{i}(1)$	$Y_{i}(0)$
Ex-felon applicant	1	0	0	???
Non-ex-felon applicant	0	1	???	1

	T_i (ex-felon)	Y_i (callback)	$Y_{i}(1)$	$Y_{i}(0)$
Ex-felon applicant	1	0	0	???
Non-ex-felon applicant	0	1	???	1

• Association is not causation

	T_i (ex-felon)	Y_i (callback)	$Y_{i}(1)$	$Y_{i}(0)$
Ex-felon applicant	1	0	0	???
Non-ex-felon applicant	0	1	???	1

- Association is not causation
- Need to infer the missing counterfactuals!

• Find a similar unit! \rightsquigarrow **matching** (Mill's method of difference)

- Find a similar unit! ~~ **matching** (Mill's method of difference)
- Did applicant fail to get a job offer because of his criminal record?

- Find a similar unit! ~> **matching** (Mill's method of difference)
- Did applicant fail to get a job offer because of his criminal record?
 - ~> find a non-ex-felon who is just like ex-felon applicant.

- Find a similar unit! ~~ **matching** (Mill's method of difference)
- Did applicant fail to get a job offer because of his criminal record?

~> find a non-ex-felon who is just like ex-felon applicant.

• NJ increased the minimum wage

- Find a similar unit! ~> **matching** (Mill's method of difference)
- Did applicant fail to get a job offer because of his criminal record?

~> find a non-ex-felon who is just like ex-felon applicant.

• NJ increased the minimum wage

 \blacktriangleright \rightsquigarrow find a state similar to NJ that didn't increase minimum wage.

- Find a similar unit! ~> **matching** (Mill's method of difference)
- Did applicant fail to get a job offer because of his criminal record?

~> find a non-ex-felon who is just like ex-felon applicant.

NJ increased the minimum wage

 \blacktriangleright \rightsquigarrow find a state similar to NJ that didn't increase minimum wage.

The problem: we cannot match on everything

- Find a similar unit! ~> **matching** (Mill's method of difference)
- Did applicant fail to get a job offer because of his criminal record?

A state of the state of the

NJ increased the minimum wage

A state similar to NJ that didn't increase minimum wage.

- The problem: we cannot match on everything
- Unobserved confounders: variables associated with treatment and outcome
 \$\$ selection bias

4/ Assignment

• Next time:

• Next time:

One way to get around confounding: randomization.

• Next time:

• One way to get around confounding: randomization.

• Your to-do list:

• Next time:

• One way to get around confounding: randomization.

• Your to-do list:

DataCamp Assignment 1 by tonight.

• Next time:

One way to get around confounding: randomization.

• Your to-do list:

- DataCamp Assignment 1 by tonight.
- Log into Perusall and rstudio.cloud

• Next time:

One way to get around confounding: randomization.

• Your to-do list:

- DataCamp Assignment 1 by tonight.
- Log into Perusall and rstudio.cloud
- Read Imai 2.1-2.4 if you haven't

• Next time:

- One way to get around confounding: randomization.
- Your to-do list:
 - DataCamp Assignment 1 by tonight.
 - Log into Perusall and rstudio.cloud
 - Read Imai 2.1-2.4 if you haven't
- Problem Set 1:

Next time:

- One way to get around confounding: randomization.
- Your to-do list:
 - DataCamp Assignment 1 by tonight.
 - Log into Perusall and rstudio.cloud
 - Read Imai 2.1-2.4 if you haven't
- Problem Set 1:
 - Will go out today.

Next time:

- One way to get around confounding: randomization.
- Your to-do list:
 - DataCamp Assignment 1 by tonight.
 - Log into Perusall and rstudio.cloud
 - Read Imai 2.1-2.4 if you haven't
- Problem Set 1:
 - Will go out today.
 - Analysis of a randomized field experiment in Boston by a Gov faculty member (Ryan Enos).

Next time:

- One way to get around confounding: randomization.
- Your to-do list:
 - DataCamp Assignment 1 by tonight.
 - Log into Perusall and rstudio.cloud
 - Read Imai 2.1-2.4 if you haven't
- Problem Set 1:
 - Will go out today.
 - Analysis of a randomized field experiment in Boston by a Gov faculty member (Ryan Enos).
 - You'll be able to copy a project for HW 1 on rstudio.cloud that will have templates, data, etc.