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Logistics

• Problem set 2:

▶ due Thursday by midnight.
▶ remember to turn in Rmd and compiled pdf!
▶ this time we start to take points off for Rmd files that don’t compile.

• Midterm 1:

▶ Next Tuesday.
▶ Covers material through today.
▶ Review session on Thursday.

• Mike’s Monday section rescheduled to this Thursday (10/4) at 12pm in CGIS
S020.

• Midterm course evaluations aǒter the midterm.
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Where are we? Where are going?

• Talked about survey sampling, its problems

• How to summarize a single variable? Mean, median, range, SD.
• Now: how to summarize relationship between variables.

• Review 3.5–3.6
• Revisit the gay-marriage experiment:

▶ LaCour and Green (2015). “When contact changes minds: An experiment of
transmission of support for gay equality.” Science, Vol. 346, No. 6215
pp. 1366–1369.

▶ Broockman, Kalla, Aronow (2015). “Irregularities in LaCour (2014)”

5 / 35



Where are we? Where are going?

• Talked about survey sampling, its problems
• How to summarize a single variable? Mean, median, range, SD.

• Now: how to summarize relationship between variables.

• Review 3.5–3.6
• Revisit the gay-marriage experiment:

▶ LaCour and Green (2015). “When contact changes minds: An experiment of
transmission of support for gay equality.” Science, Vol. 346, No. 6215
pp. 1366–1369.

▶ Broockman, Kalla, Aronow (2015). “Irregularities in LaCour (2014)”

5 / 35



Where are we? Where are going?

• Talked about survey sampling, its problems
• How to summarize a single variable? Mean, median, range, SD.
• Now: how to summarize relationship between variables.

• Review 3.5–3.6
• Revisit the gay-marriage experiment:

▶ LaCour and Green (2015). “When contact changes minds: An experiment of
transmission of support for gay equality.” Science, Vol. 346, No. 6215
pp. 1366–1369.

▶ Broockman, Kalla, Aronow (2015). “Irregularities in LaCour (2014)”

5 / 35



Where are we? Where are going?

• Talked about survey sampling, its problems
• How to summarize a single variable? Mean, median, range, SD.
• Now: how to summarize relationship between variables.

• Review 3.5–3.6

• Revisit the gay-marriage experiment:

▶ LaCour and Green (2015). “When contact changes minds: An experiment of
transmission of support for gay equality.” Science, Vol. 346, No. 6215
pp. 1366–1369.

▶ Broockman, Kalla, Aronow (2015). “Irregularities in LaCour (2014)”

5 / 35



Where are we? Where are going?

• Talked about survey sampling, its problems
• How to summarize a single variable? Mean, median, range, SD.
• Now: how to summarize relationship between variables.

• Review 3.5–3.6
• Revisit the gay-marriage experiment:

▶ LaCour and Green (2015). “When contact changes minds: An experiment of
transmission of support for gay equality.” Science, Vol. 346, No. 6215
pp. 1366–1369.

▶ Broockman, Kalla, Aronow (2015). “Irregularities in LaCour (2014)”

5 / 35



Where are we? Where are going?

• Talked about survey sampling, its problems
• How to summarize a single variable? Mean, median, range, SD.
• Now: how to summarize relationship between variables.

• Review 3.5–3.6
• Revisit the gay-marriage experiment:

▶ LaCour and Green (2015). “When contact changes minds: An experiment of
transmission of support for gay equality.” Science, Vol. 346, No. 6215
pp. 1366–1369.

▶ Broockman, Kalla, Aronow (2015). “Irregularities in LaCour (2014)”

5 / 35



Where are we? Where are going?

• Talked about survey sampling, its problems
• How to summarize a single variable? Mean, median, range, SD.
• Now: how to summarize relationship between variables.

• Review 3.5–3.6
• Revisit the gay-marriage experiment:

▶ LaCour and Green (2015). “When contact changes minds: An experiment of
transmission of support for gay equality.” Science, Vol. 346, No. 6215
pp. 1366–1369.

▶ Broockman, Kalla, Aronow (2015). “Irregularities in LaCour (2014)”

5 / 35



2/ Investigating fraud
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Changing minds on gay marriage

• Question: Can we effectively persuade people to change their minds?

• Contact Hypothesis: outgroup hostility diminishes when people from
different groups interact with one another.

• Two randomized control trials in Los Angeles

• Target population: voters in Los Angeles.

• Sampling frame: registered voter list.

▶ invited randomly selected voters to participate in an online baseline survey.
▶ asked them to refer their friends and families with compensation.
▶ those friends and family are also invited to participate in the online baseline

survey.
▶ panel data: baseline plus 6 waves.
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Study design

• Randomized treatment:

▶ gay vs. straight canvassers with similar characteristics
▶ same-sex marriage vs. recycling scripts (placebo)
▶ control group: no canvassing

• Persuasion scripts are the same except on important difference:

▶ gay canvassers: they would like to get married but law prohibits it.
▶ straight canvassers: their gay child, friend, or relative would to get married

but the law prohibits it.

• Outcome measures:

▶ support for same-sex marriage.
▶ feeling toward gay people.
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Big and lasting effects of persuasion
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Reshaped data
Name Description
study Which study is the data from (1 = Study1, 2 = Study2)
treatment Five possible treatment assignment options
therm1 Survey thermometer rating of feeling towards gay couples in

waves 1 (0–100)
therm2 Survey thermometer rating of feeling towards gay couples in

waves 2 (0–100)
therm3 Survey thermometer rating of feeling towards gay couples in

waves 3 (0–100)
therm4 Survey thermometer rating of feeling towards gay couples in

waves 4 (0–100)
gay.reshaped <- read.csv(”data/gayreshaped.csv”)
names(gay.reshaped)

## [1] ”study” ”treatment” ”therm1” ”therm2”
## [5] ”therm3” ”therm4”

10 / 35



Comparison of gay thermometer across waves

• Compare between waves 1 and 2 for the control group in Study 1:
gay1.control <- subset(gay.reshaped, (study == 1) &

(treatment == ”No Contact”))
hist(gay1.control$therm1, freq = FALSE, main = ”wave 1”)
hist(gay1.control$therm2, freq = FALSE, main = ”wave 2”)
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3/ Bivariate relationships
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Scatterplot

• Direct graphical comparison of two variables.

• Each point on the scatterplot (𝑥𝑖, 𝑦𝑖)• Use the plot() function

plot(x = gay1.control$therm1, y = gay1.control$therm2,
xlab = ”Wave 1”, ylab = ”Wave 2”)
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Scatterplot
gay1.control[1, c(”therm1”, ”therm2”)]

## therm1 therm2
## 1 91 91
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Scatterplot
gay1.control[2, c(”therm1”, ”therm2”)]

## therm1 therm2
## 2 72 72
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Scatterplot
gay1.control[3, c(”therm1”, ”therm2”)]

## therm1 therm2
## 3 69 69
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Scatterplot
gay1.control[1,c(”therm1”, ”therm2”)]

## therm1 therm2
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How big is big?

• Variables can be on different scales: makes it difficult to assess how well
they “go together”

• Need a way to put any variable on common units.

• z-score:
z-score of 𝑥𝑖 = 𝑥𝑖 − mean of 𝑥

standard deviation of 𝑥
• z-scores don’t depend on units:

z-score of (𝑎𝑥𝑖 + 𝑏) = z-score of 𝑥𝑖
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Correlation

• How do variables move together on average?

• If I know one variable is big, does that tell me anything about how big the
other variable is?

▶ Positive correlation: when 𝑥 is big, 𝑦 is also big
▶ Negative correlation: when 𝑥 is big, 𝑦 is small
▶ High correlation: data cluster tightly around a line.

• The technical definition of the correlation coefficient:

1
𝑛 − 1

𝑛
∑
𝑖=1

[(z-score for 𝑥𝑖) × (z-score for 𝑦𝑖)]
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▶ Negative correlation: when 𝑥 is big, 𝑦 is small
▶ High correlation: data cluster tightly around a line.

• The technical definition of the correlation coefficient:
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Correlation intuition
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• Large values of 𝑋 tend to occur with large values of 𝑌:

▶ (z-score for 𝑥𝑖) × (z-score for 𝑦𝑖) = (pos. num.) × (pos. num) = +
• Small values of 𝑋 tend to occur with small values of 𝑌:

▶ (z-score for 𝑥𝑖) × (z-score for 𝑦𝑖) = (neg. num.) × (neg. num) = +

• If these dominate⇝ positive correlation.
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Properties of correlation coefficient

• Correlation measures linear association.

• Interpretation:

▶ Correlation is between -1 and 1
▶ Correlation of 0 means no linear association.
▶ Positive correlations⇝ positive associations.
▶ Negative correlations⇝ negative associations.
▶ Closer to -1 or 1 means stronger association.

• Order doesn’t matter: cor(x,y) = cor(y,x)
• Not affected by changes of scale:

▶ cor(x,y) = cor(ax+b, cy+d)
▶ Celsius vs. Fahreneheit; dollars vs. pesos; cm vs. in.
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Correlation in R

• Use the cor() function

• Missing values: set the use = ”pairwise”⇝ available case analysis

cor(gay1.control$therm1, gay1.control$therm2,
use = ”pairwise”)

## [1] 0.998

• Extremely high correlation!
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Comparisons between studies

• Cannot use plot() or cor(). Why?

• Different studies have different respondents.
• Start with histograms:

gay1 <- subset(gay.reshaped, (study == 1))
gay2 <- subset(gay.reshaped, (study == 2))

hist(gay1$therm1, freq = FALSE, breaks = 20,
ylim = c(0, 0.05), xlab = ”Feeling Thermometer”,
main = ”Study 1, Baseline”)
hist(gay2$therm1, freq = FALSE, breaks = 20,
ylim = c(0, 0.05), xlab = ”Feeling Thermometer”,
main = ”Study 2, Baseline”)
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Very similar!!
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Quantile-Quantile Plot

• Quantile-quantile plot (qq-plot): Plot the quantiles of each distribution
against each other.

• Example points:

▶ (min of 𝑋, min of 𝑌)
▶ (median of 𝑋, median of 𝑌)
▶ (25th percentile of 𝑋, 25th percentile of 𝑌)

• 45 degree line indicates quality of the two distributions.
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QQ-plot example
qqplot(gay1$therm1, gay2$therm1, xlab = ”Study 1, Wave 1”,

ylab = ”Study 2, Wave 1”)
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What is going on?!!?

• Question wording of thermometer score attributed to 2012 Cooperative
Campaign Analysis Project (CCAP):

Name Description
caseid unique respondent ID
gaytherm Survey thermometer rating (0-100) of feeling to-

wards gay couples

• CCAP has some missing data:

ccap <- read.csv(”data/ccap2012.csv”)
mean(is.na(ccap$gaytherm))

## [1] 0.0704
mean(is.na(gay1$therm1))

## [1] 0
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mean(is.na(ccap$gaytherm))

## [1] 0.0704
mean(is.na(gay1$therm1))

## [1] 0
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Comparison of CCAP and Study 1

Study 1, Baseline
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• Suspiciously similar!
• What’s the difference?
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Recoding missing as 50s
ccap$gaytherm[is.na(ccap$gaytherm)] <- 50
hist(ccap$gaytherm, freq = FALSE,

ylim = c(0, 0.05), xlab = ”Feeling Thermometer”,
main = ”CCAP: with missing data as 50”)

CCAP: with missing data as 50
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QQ plots reveal extreme similarity

qqplot(ccap$gaytherm, gay1$therm1, xlab = ”CCAP”,
ylab = ”Study 1, Baseline”)

qqplot(ccap$gaytherm, gay2$therm1, xlab = ”CCAP”,
ylab = ”Study 2, Baseline”)
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Retraction
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Wrapping up

• Scatterplots, correlation, and QQ-plots all help us visualize relationships
between variables.

• With gay-marriage study, helped us detect fraud.
• Aǒter midterm: prediction!
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