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Where are we? Where are we going?

• Last few weeks = how to produce a best estimate of some population parameter,
drawing on our knowledge of probability.

• Also learned how to derive an estimated range of plausible values of the param-
eter in the confidence interval.

• Now: how to use our estimates to test a particular hypothesis about the data.
• We’ll draw heavily on our probability knowledge from earlier in the term!

hypothesis testing examples
The lady tasting tea

• Remember the setup:

Your advisor asks you to grab a tea with milk for him before your
meeting and he says that he prefers tea poured before the milk. You
stop by Darwin’s and ask for a tea with milk. When you bring it to
your advisor, he complains that it was prepared milk-first.

• You are skeptical that he can really tell the difference, so you devise a test:

– Prepare 8 cups of tea, 4 milk-first, 4 tea-first
– Present cups to advisor in a random order
– Ask advisor to pick which 4 of the 8 were milk-first.
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Assuming we know the truth

• Advisor picks out all 4 milk-first cups correctly!
• Statistical thought experiment: how often would she get all 4 correct if she were

guessing randomly?

– Only one way to choose all 4 correct cups.
– But 70 ways of choosing 4 cups among 8.
– Choosing at random ≈ picking each of these 70 with equal probability.

• Chances of guessing all 4 correct is 1
70 ≈ 0.014 or 1.4%.

• ⇝ the guessing at random hypothesis might be implausible.

Election prediction

• Alan Lichtman (History atAmericanU.) has predicted thewinner of every pres-
idential election all 8 elections since 1984.

– Doesn’t use any polls, just 13 true/false questions.
– Ex: “Challenger charisma”
– This year he’s trolling liberals: predicts Trump win.

• Does he have predictive value? Does he do better than random guessing?

– If he randomly choosing between the two candidates in each election, he’d
flipping 8 coins with probability 0.5.

– ⇝ number of correct predictions is Binomial(8, 0.5)

• What’s the probability that he would do this well if he guessing at random?

dbinom(x = 8, size = 8, prob = 0.5)

## [1] 0.00390625

plot(x = 0:8, y = dbinom(0:8, size = 8, prob = 0.5), type = ”h”, lwd = 4, las = 1, xlab = ”# of Correct Predctions”, ylab = ””, col = c(rep(”black”, 8), ”indianred”), bty = ”n”)

mtext(”Probability”, side = 2, line = 3)
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Social pressure effect

load(”../data/gerber_green_larimer.RData”)

social$voted <- 1 * (social$voted == ”Yes”)

neigh.mean <- mean(social$voted[social$treatment == ”Neighbors”])

contr.mean <- mean(social$voted[social$treatment == ”Civic Duty”])

neigh.mean - contr.mean

## [1] 0.06341057

• Treatment effect of 6.3410569 percentage points.
• But we know that the estimator varies from sample to sample due to random

chance.
• Could this happen by random chance if there was no treatment effect at all?

Review of the difference in means

• Treated group Y1, Y2, . . . , Yny i.i.d. with population mean µy and population
variance σ2

y

• Control group X1, X2, . . . , Xnx i.i.d. with population mean µx and popula-
tion variance σ2

x

• Quantity of interest: populationdifferences in average turnout: E[Yi]−E[Xi] =
µy − µx

• Estimator: sample difference in means: D̂n = Y ny −Xnx

• We estimated the standard error of D̂n with:

ŝe[D̂n] =

√
S2
y

ny
+

S2
x

nx

hypothesis test nomenclature
What is a hypothesis test?

A hypothesis is just a statement about population parameters. We might have hy-
potheses about causal inferences:

• Does social pressure induce higher voter turnout? (mean turnout higher in
social pressure group compared to Civic Duty group?)
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• Do daughters cause politicians to be more liberal on women’s issues? (voting
behavior different among members of Congress with daughters?)

• Do treaties constrain countries? (behavior different among treaty signers?)

We might also have hypotheses about other parameters:

• Is the share of Hillary Clinton supporters more than 50%?
• Are traits of treatment and control groups different?

A hypothesis test is an evaluation of a particular hypothesis about the population
distribution. It is a statistical thought experiments with a couple of steps. First, we
assume that we know the true DGP or part of the true DGP. Then, we use tools of
probability to see what types of data we should see under this assumption. Finally, we
compare our observed data to this thought experiment. We will “reject” the assumed
DGP if the data is too unusual under it. Thus, hypothesis testing is like a statistical
proof by contradiction.

Null and alternative hypotheses

To perform a hypothesis test, we need to state two precise and mutually exclusive
hypotheses.

• Defintion The null hypothesis is a proposed, conservative value for a popula-
tion parameter.

– This is usually “no effect/difference/relationship.”
– We denote this hypothesis as H0 : θ = θ0.
– H0: Social pressure doesn’t affect turnout (H0 : µy − µx = 0)

• DefinitionThe alternative hypothesis for a given null hypothesis is the research
claim we are interested in supporting.

– Usually, “there is a relationship/difference/effect.”
– We denote this as Ha : θ ̸= θ0.
– Ha: Social pressure affects turnout (Ha : µy − µx ̸= 0)

General framework

• A hypothesis test chooses whether or not to reject the null hypothesis based on
the data we observe.



6

• Rejection based on a test statistic, Tn = T (Y1, . . . , Yn). This statistic will help
us adjudicate between the null and the alternative. Typically, it will be the case
that larger values of Tn imply that the null hypothesis is less plausible. Note that
the

• The null/reference distribution is the distribution of T under the null. This is
the key part of the statistical thought experiment. Once we assume the DGP
(that is, assume that the null hypothesis is true), we will be able to figure out
this null distribution. And we’ll use this to assess how likely different values of
Tn are under the null. We’ll write its probabilities as P0(Tn ≤ t).

• By the CLT, we know that the standardized difference in means has a standard
normal distribution in large samples:

Tn =
D̂n − (µy − µx)

ŝe[D̂]

d→ N(0, 1)

• Under the null hypothesis of H0 : µy − µx = 0, then we have

Tn =
D̂n

ŝe[D̂n]

d→ N(0, 1)

• If Tn is very far from 0⇝ large sample diff-in-means⇝ no population diff-in-
means is not plausible.

Rejection regions

• DefinitionThe rejection region,R, contains the values ofTn forwhichwe reject
the null. These are the areas that indicate that there is evidence against the null.

• With a two-sided alternative (H0 : µy − µx = 0 vs Ha : µy − µx ̸= 0),
the rejection region will intuitively be when Tn is much bigger than 0 or much
smaller than 0. Both of these are unlikely under the null of no effect and so are
evidence against the null. Thus, the rejection regions for two-sided alternatives
will be |Tn| > c for some value c.

• We determine these rejection regions by attempting to control the probability of
making mistakes in our tests. There are two types of mistakes we might make.

H0 True H0 False
Retain H0 Awesome! Type II error
Reject H0 Type I error Good stuff!
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Definition 1. Type I errors A Type I error is when we reject the null hypothesis when
it is in fact true.

• We say that the Lady is discerning when she is just guessing. A false discovery
(very bad, thus type I).

Definition 2. Type II errorsAType II error is whenwe fail to reject the null hypothesis
when it is false.

• We say that the Lady is just guessing when she is truly discerning. An unde-
tected finding (not as bad, thus type II).

• Defintion The level/size of the test, or α, is the probability of a Type I error.
With two-sided alternative, we reject when |Tn| > c, which implies that the
size of test then is: P0(|Tn| > c) = α

• Choose a level α based on aversion to false discovery. The convention in social
sciences isα = 0.05, but nothingmagical there. For instance, particle physicists
at CERNuseα ≈ 1

1,750,000 . The key tradeoff here is that lower values ofα guard
against “flukes” but increase barriers to discovery.

conducting hypothesis tests
Hypothesis testing procedure

1. Choose null and alternative hypotheses
2. Choose a test statistic, Tn

3. Choose a level, α
4. Determine rejection region
5. Reject if Tn in rejection region, fail to reject otherwise



8
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• What’s the rejection region |Tn| > c if α = 0.05?
• Under the null hypothesis of no effect, we want Tn to be in the rejection region

only 5% of the time.

– ⇝ false rejection of the null only 5% of the time.
– Can find c based on the null distribution being ≈ standard normal!

Determining the rejection region
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1 − α 2 α 2
c = zα 2− c = − zα 2

• Find zα/2 such that

P0(Tn < −zα/2) = P0(Tn > zα/2) = α/2

• ⇝ find quantile P0(Tn < zα/2) = 1− α/2
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– if α = 0.05⇝ zα/2 = qnorm(1-0.05/2) = 1.959964

Final hypothesis test

1. Hypotheses: H0 : µy − µx = 0 vs. Ha : µy − µx ̸= 0

2. Test statistic: Tn = D̂n/ŝe[D̂n]
3. Use α = 0.05
4. Rejection region is |Tn| > 1.96.

Social pressure test

• Calculate test statistic for social pressure mailers:

neigh_var <- var(social$voted[social$treatment == ”Neighbors”])

neigh_n <- 38201

civic_var <- var(social$voted[social$treatment == ”Civic Duty”])

civic_n <- 38218

se_diff <- sqrt(neigh_var/neigh_n + civic_var/civic_n)

## Calcuate test statistic

(0.378-0.315)/se_diff

## [1] 18.34304

• |Tn| = 18.3430374 > 1.96⇝ REJECT!

Perform the test
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t-test

• These ideas extend to any asymptotically normal estimator, θ̂ for parameter θ.
Consider testing H0 : θ = θ0 vs. Ha : θ ̸= θa. A size-α t-test (or Wald test)
rejects H0 when |Tn| > zα/2 where

Tn =
θ̂ − θ0

ŝe[θ̂]

• Critical value zα/2 calculated in the exact same way as above. For standard
normal Z , find zα/2 such that P(Z ≤ zα/2) = 1− α/2.

• Size of the test converges to the nominal size asn gets bigP0(|Tn| > zα/2)
p→ α.

Confidence intervals and hypothesis tests

• 95% confidence interval: D̂n ± 1.96× ŝe

• CI/Test duality: A 100(1−α)% confidence interval represents all null hypothe-
ses that we would not reject with a α-level test.

• Example:

– Construct a 95% CI (a, b) for µy − µx.
– If 0 ∈ (a, b)⇝ cannot reject H0 : µy − µx = 0 at α = 0.05
– If 0 /∈ (a, b)⇝ reject H0 : µy − µx = 0 at α = 0.05

• CIs are a range of plausible values in the sense we cannot reject them as null
hypotheses.

One-sided tests

• Definition A one-sided test is a test of an alternative hypothesis that only goes
in one direction.

– The social pressure effect is positive (Ha : µy − µx > 0)

• Only deviations from the null hypothesis in one direction cast doubt on the null
hypothesis.

– Rejection region is only in one tail: Tn > c, with c adjusted downward
relative to two-sided test with the same level.

• Really only valid when one side is a priori not possible.
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p-values
Just rejecting or not rejecting the null hypothesis is not too informative. We rejected
null of no population diff-in-means (H0 : µy − µx = 0) at α = 0.05. What about
all the other levels like α = 0.01? p-values are a useful way to summarize all possible
levels at once.

Definition 3. p-value The p-value is the smallest value α such that an α-level test
would reject the null hypothesis.

• If p-value is less than α, then we often say it is statistically significant at level α.
For example, if p-value is 0.03, then we can reject at α = 0.05 of α = 0.1.

• Theorem For a two-sided test with observed test statistic Tn = tobs, the p-value
is the probability (underH0) of observing a value of the test statistict at least as
extreme as the one observed:

P0(|Tn| > tobs)

• Low p-value⇝ data was unlikely given the null⇝ evidence against the null.

Calculating the p-value

• Social pressure test statistic, tobs = 18.5. How likely would it be to get a test
statistic this extreme or more extreme if there were no treatment effect?

P0(|Tn| > 18.5) = P0(Tn > 18.5) + P0(Tn < −18.5)

= 2× P0(Tn < −18.5)
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• Use the pnorm() function:

2 * pnorm(-18.5)

## [1] 2.06474e-76

Be careful with p-values

• p-values are not:

– An indication of a large substantive effect
– The probability that the null hypothesis is false
– The probability that the alternative hypothesis is true

• Using a p-value cutoff (p < 0.05) can be very misleading. Leads to a clustering
of p-values at 0.049. False discovery rates actually quite high (p-value fallacy).

• As difficult as they are to interpret, confidence intervals actually make more
sense. CIs allow easy assessment substantive and statistical significance.

power analyses
Effect sizes

• Why did Gerber, Green, and Larimer use sample sizes of 38,000 for each treat-
ment condition?

• Choose the sample size to ensure that you can detect what you think might be
the true treatment effect:

– Small effect sizes (half percentage point) will require huge n
– Large effect sizes (10 percentage points) will require smaller n

• Detect here means “reject the null of no effect”
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Power of a test

• Definition The power of a test is the probability that a test rejects the null.

– Probability thatwe reject given some specific value of the parameterPθ(|T | >
c)

– Power = 1− P(Type II error)
– Better tests = higher power.

• If we fail to reject a null hypothesis, two possible states of the world:

– Null is true (no treatment effect)
– Null is false (there is a treatment effect), but test had low power.

Why care about power?

• Imagine you are a company being sued for racial discrimination in hiring.
• Judge forces you to conduct hypothesis test:

– Null hypothesis is that hiring rates for white and black people are equal,
H0 : µw − µb = 0

– You sample 10 hiring records of each race, conduct hypothesis test and fail
to reject null.

• Say to judge, “look we don’t have any racial discrimination”! What’s the prob-
lem?

Power analysis procedure

• Power can help guide the choice of sample size through a power analysis.

– Calculate how likely we are to reject different possible treatment effects at
different sample sizes.

– Can be done before the experiment: which effects will I be able to detect
with high probability at my n?

• Steps to a power analysis:

– Pick some hypothetical effect size, µy − µx = 0.05
– Calculate the distribution of T under that effect size.
– Calculate the probability of rejecting the null under that distribution.
– Repeat for different effect sizes.
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Power analysis

• Youwant to run another turnout experiment want tomake sure you have a high
probability of rejecting the null if the true effect is µy − µx = 0.05.

• Unfortunately, your grant $$ areminimal so you can only send 500mailers (250
for each type).

• Need to assume values for unknown variances:

– Assume we know that σ2
y = σ2

x = 0.2

– Implies V[D̂n] = 0.2/250 + 0.2/250 = 0.0016.

• Using these assumptions, we can derived the sampling distribution of the esti-
mator under the proposed effect size:

D̂n ≈ N(0.05, 0.0016)

Power analysis

• What is the probability of rejecting the null if µy − µx = 0.05?

• We reject when

|T | =

∣∣∣∣∣D̂n − 0

ŝe[D̂n]

∣∣∣∣∣ > 1.96 ⇐⇒ |D̂n| > 1.96× ŝe[D̂n]

• Since we assumed that V[D̂n] = 0.0016 then we reject when:{
D̂n < −1.96×

√
0.0016

}
∪
{
D̂n > 1.96×

√
0.0016

}
• Can figure out the probability of this from the sampling distribution we just

derived!

P
(
D̂n < −1.96×

√
0.0016

)
+ P

(
D̂n > 1.96×

√
0.0016

)
Power in R

• Power of the test againstµy−µx = 0.05, using the fact that D̂n ≈ N(0.05, 0.0016):

se <- sqrt(0.2/250 + 0.2/250)

pnorm(-1.96 * se, mean = 0.05, sd = se) + pnorm(1.96 * se, mean = 0.05, sd = se, lower.tail = FALSE)

## [1] 0.2395157

• Interpretation: if the true effectwas a 5 percentage point increase in voter turnout,
then we would be able to reject the null of no effect about a quarter of the time.
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Power graph

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

T

Retain RejectReject

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

T

Retain RejectReject

A power analysis

• We can calculate the power for every possible effect size and plot the resulting
power curve:

– n = 500 (blue), 1000 (red), 10000 (black)

hold <- seq(-0.2, 0.2, by = 0.005)

power500 <- function(x) pnorm(-1.96 * se, x, se) + pnorm(1.96*se, x, se, lower.tail = FALSE)

se1k <- sqrt(0.2/500 + 0.2/500)

power1k <- function(x) pnorm(-1.96 * se1k, x, se1k) + pnorm(1.96*se1k, x, se1k, lower.tail = FALSE)
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se10k <- sqrt(0.2/5000 + 0.2/5000)

power10k <- function(x) pnorm(-1.96 * se10k, x, se10k) + pnorm(1.96*se10k, x, se10k, lower.tail = FALSE)

curve(power500, -0.2, 0.2, col = ”dodgerblue”, lwd = 3, ylim = c(0,1), ylab = ”Power”, las = 1, xlab = ”Hypothesized effect size”, bty = ”n”)

curve(power1k, -0.2, 0.2, col = ”indianred”, lwd = 3, ylim = c(0,1), add = TRUE)

curve(power10k, -0.2, 0.2, col = ”black”, lwd = 3, ylim = c(0,1), add = TRUE)

abline(h=0.05, col = ”grey”)
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exact inference*
Small sample complications

• Asymptotics are approximations. Canwe ever get exact inferences at any sample
size?

– Exact means that we know or can figure out the distribution of a statistic
without relying on an approximation.

• Remember: we are using a nonparametric model

– Yi are i.i.d. with E[Yi] = µ < ∞ and V[Yi] = σ2 < ∞
– Relied on large n to get distribution of Y n (CLT)

• Alternative: use a parametric model and assume Y1, . . . , Yn are i.i.d. samples
from N(µ, σ2)

– Stronger assumptions⇝ learn more with lower n
– Model dependence: If the model is wrong (Yi are not normal), inferences

will be wrong!
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Exact inference for the normal distribution

• Remember that the CLT gives us the following approximation:

Tn =
Y n − µ

Sn√
n

d→ N(0, 1)

• If we additionally know that Yi ∼ N(µ, σ2), then we know the following for
any sample size:

Tn =
Y n − µ

Sn√
n

∼ tn−1

• Here, tn−1 is the Student’s t-distribution (usually just called the t distribution)
with n− 1 degrees of freedom (df).

– Family of distributions with parameter df.

• Named afterWilliam Sealy Gossett who published under the pen name, Student.

The shape of the t

• The t distribution is completely summarized by its degrees of freedom, which
here is dictated by the sample size.

– As sample sizes increase, tends toward the N(0, 1)
– Similar shape to the Normal, but with fatter tails.

• You can think of this extra variance as coming from the extra variance of esti-
mating the SE.

curve(dnorm(x), from = -5, to = 5, lwd = 2, bty = ”n”, ylab = ”f(x)”, las = 1)

curve(dt(x, df = 5), from = -5, to = 5, add = TRUE, lwd = 2, col = ”orange”)

legend(x = 2, y = 0.3, legend = c(”Normal”, ”t (df = 5)”), lwd = 2, col = c(”black”, ”orange”), bty = ”n”)
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Using the t for small samples

• Use the same test statistic:
Tn =

Y n − µ0

Sn/
√
n

• Assuming the null hypothesis, Tn ∼ tn−1, so use this distribution in place of
the normal

• Use qt() in place of qnorm() for:

– Testing: finding critical values tn−1,α/2 such that P0(T ≤ tn−1,α/2) =
1− α/2

– CIs: for tn−1,α/2 in place of z-values: Y n ± tn−1,α/2 × Sn√
n

• Conservative approach relative to using asymptotic normality:

– The t distribution has fatter tails⇝ tn−1,α/2 > zα/2
– ⇝ wider CIs, smaller rejection regions

Rejection region with the t

par(mar = c(2.1, 4, 0.1, 0.1))

curve(dt(x, df = 5), from = -4, to = 4, ylim = c(-.02, 0.5), bty = ”n”, las = 1, ylab = ”f(x)”)

abline(h = 0)

thisq <- qt(0.975, df = 5)

polygon(c(-4,seq(-4,thisq,0.01),thisq), c(0,dt(seq(-4,thisq,0.01), df = 5), 0), col = ”grey70”, border = NA)

text(x = 0, y = 0.2, ”0.975”)
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segments(x0 = thisq, y0 = 0, y1 = 0.3, lwd = 2, lty = 2)

text(x = thisq, y = 0.3, ”t = ?”, pos = 3)
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qt(0.975, df = 6 - 1)

## [1] 2.570582

wrap up
Key points

• Hypothesis testing:

– Statistical thought experiments.
– Allow us to test specific hypotheses about parameters.

• p-values:

– Summarize evidence against the null in this data set.
– Can be misleading, better to use confidence intervals.

• Deep connection between confidence intervals and hypothesis tests.

• Sometimes exact inference is possible, but only under strong assumptions.
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• Power analyses help to guide what sample size we need.

• Next week: beginning to think about regression.
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