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Abstract

e estimation of causal effects has a revered place in all ĕelds of empirical political sci-
ence, but a large volume of methodological and applied work ignores a fundamental fact:
most people are skeptical of estimated causal effects. In particular, researchers are oen
worried about the assumption of no omitted variables or no unmeasured confounders.
is paper combines two approaches to sensitivity analysis to provide researchers with
a tool to investigate how speciĕc violations of no omitted variables alter their estimates.
is approach can help researchers determine which narratives imply weaker results and
which actually strengthen their claims. is gives researchers and critics a reasoned and
quantitative approach to assessing the plausibility of causal effects. To demonstrate the ap-
proach, I present applications to three causal inference estimation strategies: regression,
matching, and weighting.
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 Introduction

Scientiĕc progress marches to the drumbeat of criticism and skepticism. While the so-
cial sciences marshal empirical evidence for interpretations and hypotheses about the
world, an academic’s ĕrst (healthy!) instinct is usually to counterattack with an alter-
native account. is reinterpretation of empirical results demands a response—how
would this alternative story affect the results? Oen, the response is verbal and ad hoc,
but there is room for improvement. A crucial, if rare, exercise is a formal sensitiv-
ity analysis that weighs these alternative accounts against the empirical evidence. As
Rosenbaum () puts it, the goal of a formal sensitivity analysis is “to give quanti-
tative expression to the magnitude of uncertainties about bias.” is paper presents a
broad methodology for evaluating the sensitivity of causal effect estimation to speciĕc
critiques of bias.

e estimation of causal effects in particular has a revered place in all ĕelds of em-
pirical political science. We are deeply interested in how institutions, policies, strate-
gies, and beliefs affect political life. And while there has been a rapid growth in atten-
tion to the careful identiĕcation of causal effects, methodological and applied analyses
in causal inference oen overlook a fundamental fact: many scholars are skeptical of
identiĕcation in observational studies. Most causal inferences require an assumption of
ignorability or no omitted variables that requires treated units be comparable to control
units, possibly conditional on a set of observed covariates. Of course, such an assump-
tion is rarely justiĕed by the study design alone.Ƭ

In this paper, I combine the approaches of two sensitivity analysis traditions. First,
in the spirit of Brumback et al. (), Robins (), and Heckman et al. (), I
introduce the confounding function, which quantiĕes the extent of unmeasured con-
founding. is approach is useful because it avoids the process of imagining the pres-
ence of speciĕc (uni- or multivariate) omitted variables. Instead, researchers directly
vary the selection bias inherent in the treatment assignment. I also extend this method
by showing its applicability to non-weighting approaches to causal inference. Second,
I combine the confounding function approach with that of Imbens () to ground
the sensitivity analysis in an easily interpretable framework.

One advantage of this approach is that, once we calculate the confounding func-
tion and a propensity score, the sensitivity analysis only requires an adjustment to the
dependent variable. Whatever causal inference method a researcher uses in his or
her main analysis (regression, matching, weighting) applies to this adjusted dependent
variable. is approach even applies to marginal structural models with time-varying

Ƭere has been a steady increase in attention to causal inference without ignorability assumptions.
Extending the usual bounding approach by Manski (), political scientists have added additional as-
sumptions to generate bounds, point estimates, or hypothesis tests for causal effects. See Mebane and
Poast () and Glynn and Quinn () for examples of this approach.
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treatments (Blackwell a). us, this approach is widely applicable with a minimal
burden to applied researchers. In addition, the approach allows researchers to evaluate
narratives about the sensitivity of their effects. ey can answer questions of the fol-
lowing form: what would happen if the treated units are inherently better off than the
control units? is approach allows for possible increases and decreases in the effect
due to deviations from ignorability. As with attenuation due to measurement error,
scholars want to know when their biases are in a “safe” direction as much as when they
are not.

is paper proceeds as follows. Section  reviews the foundations of causal infer-
ence. Section  lays out the approach to sensitivity analysis and provides a convenient
reparameterization in terms of variance explained. Section  demonstrates the method
in three distinct areas, each of which has a different estimation strategy: regression,
matching, and weighting. Section  concludes with thoughts for future work.

 A review of causal inference

Let Ai be a dichtomous action or a treatment taken by unit i and Yi be the outcome for
that unit. It is common to refer to the those units with Ai =  as treated and those with
Ai =  as control. e goal will be to estimate the effect of Ai on Yi. Following Rubin
(), we can conceptualize causal effects as contrasts between various potential out-
comes. Let Yi() denote the outcome if i were treated and Yi() to denote the outcome
if i received the control. e individual causal effect for unit i would be the difference
between these two states of the world:

τi = Yi()− Yi(). ()

Without strong assumptions, these individual causal effects are inestimable because
units live in, at most, one of the two states of the world. at is, we observe a unit’s out-
come under control or we observe a unit’s outcome under treatment, but rarely both.
is is oen called the fundamental problem of causal inference.

While individual causal effects are generally beyond reach, there are other causal
quantities that are estimable with weaker assumptions. For instance, a common quan-
tity is the average treatment effect, or , which is simply the average of the individual
effects:

τ = E[Yi()− Yi()] = E[Yi()]− E[Yi()], ()
where the expectation is over units. e  measures what would happen, on average,
if all units were treated versus if all units were withheld treatment. Another common
approach is to estimate the average effect of the treatment among the treated units, or
:

τ = E[Yi()− Yi()|Ai = ] = E[Yi()|Ai = ]− E[Yi()|Ai = ]. ()
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is quantity is attractive because it requires slightly weaker assumptions on how the
treatment is assigned.

Assumptions and estimation strategies

Without additional assumptions, the above causal quantities of interest are functions of
unobservables. In order to estimate these causal effects, we need to make assumptions
to connect the unobserved potential outcomes to the data.

Assumption  (Consistency). Let a = (, ) be a treatment status. en for unit i with
Ai = a, we assume Yi(a) = Yi.

is assumption simply connects the potential outcomes to the observed outcomes.
Namely, we assume that units who take an action will observe the potential outcomes
for that action. Furthermore, the connection between potential and observed outcomes
does not depend on any other variables. is forbids any spillover effects where the
treatment assignment of one unit affects the outcome of another unit. e second as-
sumption is the cornerstone of identiĕcation for most causal estimates.

Assumption  (Ignorability). For a set of covariates,Xi and treatment statuses, a = (, ),
Yi(a) ⊥⊥ Ai|Xi.

Here, B ⊥⊥ C|Dmeans that B is independent of C, conditional onD (Dawid, ).
is assumption requires that the treatment status be independent of the potential out-
comes, conditional on a set of covariates. When the treatment assignment is random,
this assumption is satisĕed trivially because everything will be independent of the as-
signment. In an observational study, however, the analyst’s goal is to collect as many
variables as possible to include in Xi to make Assumption  as plausible as possible. An
unmeasured confounder that affects both the treatment status and the outcome would
violate this assumption. Many sensitivity analysis methods, including Imbens (),
imagine one such unmeasured confounder and vary its impact on the treatment assign-
ment and the outcome to assess the sensitivity of effects. e present method instead
directly models violations of ignorability, agnostic to the type or number of unmea-
sured confounders.

ree of the most common approaches to estimating the causal estimands τ and
τ are regression, matching, and weighting. Under the above two assumptions, each
of these can consistently estimate some causal parameter and there is a large literature
comparing their relative advantages in different situations (see, for example, Imbens
; Morgan andWinship ).ƭ Below, I present results from the sensitivity analysis
procedure applied to each.

ƭAnd in some cases, these categories overlap in the sense that onemethod can be rewritten as a special
case of another.
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Previous approaches to sensitivity analysis

Formal sensitivity analyses has been a part of causal inference since at least Cornĕeld et
al. () with signiĕcant advances that focus largely on medical studies.Ʈ Rosenbaum
() presents amethod based on the unobserved differences in treatment assignment
probabilities. His sensitivity analysis framework then ĕnds themost extreme inferences
possible based on a speciĕc unobserved difference. at is, Rosenbaum ĕxes a differ-
ence in treatment assignment and then calculates bounds on the signiĕcance level if
those differences were maximally correlated with the outcome. To accomplish this, his
model places constraints on the imagined unmeasured confounder: that it be between
 and . is approach is very useful for general sensitivity, but less so when evaluating
alternative stories. In general, the selection bias approach below can be used for both
situations and it avoids placing restrictions on the unmeasured confounder.

Imbens () uses a similar reparameterization as the presentmethod, but still re-
lies on a hypothesized unmeasured confounder and a larger parametricmodel to justify
the reparameterization. e selection bias approach only requires a baseline model of
the relationship between one potential outcome and the covariates. Imai, Keele, and
Yamamoto () and Imai et al. () provide an approach to sensitivity analysis
similar in spirit to the selection bias approach, but targeted toward a speciĕc causal
parameter: the average causal mediation effect. ese previous approaches to sensi-
tivity analysis look for the minimum perturbations needed to overturn or signiĕcantly
change results estimated under the standard assumptions. e approach here takes a
different tack: it determines how speciĕc violations of confounding alter themagnitude
and direction of causal estimates.

 A selection bias approach to sensitivity analysis

e confounding function

One way to specify and describe sensitivity to unmeasured confounders is to vary the
amount of confounding or selection bias that exists for a given causal estimate. At its
core, confounding means that the potential outcomes vary by the treatment status. We
can represent this confounding as a function of the observed covariates:

q(a, x) = E[Yi(a)|Ai = a,Xi = x]− E[Yi(a)|Ai =  − a,Xi = x]. ()

is function represents the confounding for treatment status a with covariates x. e
ignorability assumption implies that q =  so that Ai and Yi(a) are (mean) indepen-

ƮIt is important to note simply varying the speciĕcation of a statistical model is not a good substitute
for a formal sensitivity analysis. is might gauge how small perturbations to the statistical model may
change estimates, but it does not provide any formal quantiĕcation of our uncertainty due to bias.
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dent, no matter the value of Xi. e confounding function directly models violations
of ignorability: if q(a, x) is positive, then units in group a have a higher mean potential
outcome under a than those in group  − a. us, q encodes the selection bias of the
treatment assignment. For instance, suppose we have an observational study where the
treatment is negative campaigns (Ai = ) versus positive campaigns (Ai = ) and the
outcome is voter turnout. en q(, x) >  implies that the observed negative cam-
paigns have inherently higher turnout compared to the observed positive campaigns if
those positive campaigns had in fact been negative instead. at is, there is a difference
between the negative and positive campaigns beyond any causal effect.

At this point, q is completely unrestricted, but it is useful to use a simple parameter-
ization to succinctly describe the selection bias and plot it against the estimated effect
for that value of q. at is, we allow the confounding function to vary according to a
single parameter, α:

q(a, x; α) = α. ()

Here, when α >  the observed potential outcomes (Yi() forAi =  and Yi() forAi =
) are on average higher than their counterfactuals at every level ofXi. If higher levels of
Yi are better, then the observed treatment allocation is preferred to an alternative where
it is reversed. When α <  the opposite is true—the observed treatment assignment is
suboptimal.

We can alter our confounding function to change the type of sensitivity analysis
we want to conduct. For instance, suppose the observed negative campaigns either
have inherently higher or lower turnout, beyond the effect of campaign tone. en the
confounding function varies by the treatment status,

q(a, x; α) = α(a− ), ()

so that when α > , the treated group always has higher mean potential outcomes
than the control group. Of course, when α < , the control group is better off. A
cornerstone of both parameterizations is that q =  when α = , which corresponds
to the standard ignorability assumption. In this case, the results of a typical matching
or regression analysis will hold.

Implementation of the sensitivity analysis

One beneĕt to the selection bias approach to sensitivity analysis is that the implementa-
tion is both straightforward and largely independent of the causal estimation strategy.
In fact, once we have speciĕed a confounding function, this approach only requires an
estimate of the propensity score. With these in hand, we adjust the dependent variable
and re-estimate our original analysis on this adjusted dependent variable. at is, we
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replace our observed outcome, Yi, with the confounding-adjusted outcome,

Yq
i = Yi − q(Ai,Xi) Pr[ − Ai|Xi]. ()

Here we are essentially subtracting the omitted variable bias from the outcome. To see
how this adjustment works, it is instructive to look at a case without covariates:

E[Yi()] = E[Yi()|Ai = ] Pr[Ai = ] + E[Yi()|Ai = ] Pr[Ai = ] ()
= E[Yi()|Ai = ] Pr[Ai = ] + E[Yi()|Ai = ] Pr[Ai = ]

+ E[Yi()|Ai = ]Pr[Ai = ]− E[Yi()|Ai = ] Pr[Ai = ] ()
= (Pr[A = ] + Pr[A = ]) E[Yi()|Ai = ]

− (E[Yi()|Ai = ]− E[Yi()|Ai = ])Pr[Ai = ] ()
= E[Yi|Ai = ]− q() Pr[Ai = ] ()
= E[Yq

i |Ai = ]. ()

Note that () follows from consistency, and the rest of these from the properties of
conditional probability. None invoke ignorability. is analysis holds even if covariates
are added.

With the adjustment in hand, researchers can run their original analysis model on
this transformed outcome. Different estimands require slightly different adjustments.
If the  is of interest, for instance, one need only adjust the control units:

Yq
i = Yi − ( − Ai)q(,Xi) Pr[Ai = |Xi]. ()

Equations ()-() show why and how this works: the mean of the adjusted outcome
for controls equals the mean of the potential outcome under control. Brumback et al.
() shows that with the confounding-adjusted outcome, Yq

i , a marginal structural
model and inverse probability of treatment weighting can consistently estimate causal
effects. We can be more general, though: any estimator that consistently estimates
causal effects under mean unconfoundedness will consistently estimate causal effects
with the confounding-adjusted outcome.

An intuitive reason for this result is that the adjustment ensures that mean ignor-
ability holds: E[Y()|Xi] = E[Yq

i |Ai = ,Xi]. us, in this adjusted data, confounding
no longer causes bias because it no longer exists. us, any consistent estimator for
E[Y()|Xi] that relies on unconfoundedness will have asymptotic bias when using Yi,
but be consistent when using Yq

i . is allows regression and matching to recover the
causal effect in the face of speciĕed unmeasured confounding. is is crucial for our
sensitivity analysis because we can vary q or a parameter of q and see the consistently
estimated causal effect that q implies.
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econfounding adjustment approach to sensitivity analysis has the attractive prop-
erty of not requiring any change to thematching procedure or propensity score estima-
tion. e only change to the estimation procedure when assuming q ̸=  is an adjust-
ment to the outcome. us, we only have to re-estimate any function of the dependent
variable, such as a regression model or difference in means. Any pre-processing steps
remain ĕxed over various assumptions about q.

e choice of confounding function

e parametric assumptions on the confounding function are crucial to the sensitivity
analysis performed. is is because the selection bias approach can only detect sensi-
tivities in the directions allowed by the confounding function. Take as an example the
confounding function q = α(a− ), which tests against one-sided bias: Yi() is higher
(lower) for the treatment group when α >  (α < ). As the name implies, this func-
tion can detect sensitivity to one-sided selection bias, but it would fail to detect other
deviations from ignorability. at is, it can only determine the bias resulting from the
treatment group being on average better off or the control group being on average better
off. e sensitivity analysis is rigid in this way because the confounding function is not
identiĕed from the data, so that the causal model in the last section is only identiĕed
conditional on a speciĕc choice of that function. e goal of the sensitivity analysis
is not to choose the “correct” confounding function, since we have no way of evalu-
ating this correctness. By its very nature, unmeasured confounding is unmeasured.
Rather, the goal is to identify plausible deviations from ignorability and test sensitivity
to those deviations. e main harm that results from the incorrect speciĕcation of the
confounding function is that hidden biases remain hidden.

An alternative confounding function, q = a identiĕes sensitivity to what I call
alignment bias. is type of bias is likely to occur when units select into treatment and
control based on their predicted treatment effects. For instance, this might occur with
observational studies of voter outreach: campaigns might already be targeting their
turnout efforts toward individuals who they suspect will respond more positively to
these messages. More generally, the crucial goal of choosing a confounding function
is to ĕnd the most persuasive accounts of selection bias and tailor the confounding
function to address those accounts. In this way, both the researcher and the critic have
important roles to play in the design of sensitivity analyses.

Reparameterization of the confounding function

While the q function is a useful and simple summary of the confounding, it is helpful
to augment our intuition about its magnitude. Currently, q reports mean differences in
the potential outcomes, but it is difficult to know if these differences are large or small.
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Analysts need a good basis for comparison to judge the magnitude. In this section, I
introduce an alternative parameterization of q that allows for researchers to compare
the importance of the confounding relative to the importance of observed covariates.
e key insight is that each confounding function implies a share of the potential out-
come variance due to unmeasured confounding. is share provides intuition about
the parameters of the confounding function. Combining the information about the
variance explained with the direction of the selection bias helps to assess how various
departures from no unmeasured confounding will affect the estimates.

In the spirit of Imbens (), I reparameterize the q function in terms of the pro-
portion of variance explained by selection bias. To see how this works, ĕrst deĕne the
proportion of potential outcome variance due to X and A under function q as

R
q(Xi,Ai) =  − var[Yi()|Xi,Ai, q]

var[Yi()]
. ()

Here I use Yi() instead of Yi because, under ignorability, Ai should explain none of
the variance in the potential outcomes. And, unless the confounding function varies
by treatment status, using Yi() will have the same results as Yi(). Compare this value
to the variance explained simply by Xi:

R
q(Xi) =  − var[Yi()|Xi, q]

var[Yi()]
. ()

With these two values in hand, we can calculate the portion of the unexplained variance
in Yi() due to Ai alone:

R
q(Ai) =

R
q(Xi,Ai)− R

q(Xi)

 − R
q(Xi)

. ()

is partial R is the amount of the unexplained variance in the potential outcomes that
is due to selection. One can compare this to the partial R values for individual covari-
ates.⁴ us, there is some basis of comparison for the magnitude of the confounding.
Note that R

q(Ai) will be  when q =  because, in that case, Yi() ⊥⊥ Ai|Xi, so that Ai
will not affect the distribution of the potential outcomes.

It is straightforward to show that R
q(Ai) can be rewritten as:

R
q(Ai) =  − var[Yi()|Xi,Ai, q]

var[Yi()|Xi, q]
. ()

ere is a simpleway to calculate this value for the casewhere the confounding function
is the constant function q = α(a − ). For a continuous outcome, this q implies

⁴If Y is binary, there are methods for partial R values based on a latent-index model. See Imbens
() for more details.
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Yi() = Xiβ + αAi + εi. When ignorability holds, α must be  and the only difference
between the Yi() and Yi() is the treatment effect. In addition, let ε′i be the error from
the restrictedmodel, Yi() = Xiβ+ε′i, so that ε′i = αAi+εi. Note that the confounding
function summarizes all of the selection bias, so that while ε′i clearly depends on Ai, εi
is independent of Ai, conditional on Xi. Under this model, we can write:

R
q(Ai) =  − var[εi]

var[ε′i]
()

=
var[ε′i]− var[εi]

var[ε′i]
()

=
var[αAi + εi]− var[εi]

var[ε′i]
()

=
αvar[Ai]

var[ε′i]
. ()

Obviously, different q functions would lead to slightly different functional forms here.
is R

q(Ai) value, though, only shows the magnitude of the selection bias, not the di-
rection. To show this, simply combine α and R

q(Ai):

R
α(Ai) = sgn(α)R

q(Ai). ()

is reparameterization depends on the model of Yi() conditional on Xi: R
α(Ai) rep-

resents the effect of selection compared to this baseline model.⁵ And since there are no
restrictions onYi(), the reparameterization also places no restrictions on the treatment
effect.

Up to this point, these variances have been hypothetical; an analyst never observes
Yi() for any individual unit. By consistency, though, Yi = Yi() for units withAi = .
Further, under the assumption that the q function is correct, E[Yi()] = E[Yq

i ]. us,
a regression of Yq

i on and Xi among those with Ai =  recovers an estimate of var[ε′i].
Every value of q implies a calculable variance of the potential outcomes that is due
to unmeasured confounding. Furthermore, the variance explained by each covariate
provides a baseline to gauge how serious confounding is. For instance, if a researcher
shows that confounding would have to explain double the variance explained by the
most inĘuential covariate to overturn her result, she would have a rather robust result.

A useful way to show the results of this sensitivity analysis is to simply plot the di-
rectional R

α(Ai) on the x-axis and the implied treatment effects and their conĕdence
intervals on the y-axis. A bootstrap approach is useful, though time-consuming, for
calculating these conĕdence intervals. Brumback et al. () also suggest the possi-
bility of using a sandwich estimator for standard errors in this setting.

⁵One can use an alternative scaling such as dividing by the standard deviation of Yi() to eliminate
this baseline model and still retain comparability.
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 Illustrations

I now turn to providing three examples of this method in practice. Each of these exam-
ples uses a different estimation strategy and yet the selection bias approach to sensitivity
analysis works in each case.

Regression illustration: Job-training program

To get a sense for how the confounding functionworks in awell-studied case, I ĕrst look
at a job-training program ĕrst analyzed by LaLonde () and subsequently by many
authors, especially on the topic of matching estimators. e goal of this experiment
was to evaluate the effectiveness of a job-training program on subsequent wages. In
the experiment, the estimated effect of the program is ,, with a standard error of
. Imbens () applies his sensitivity analysis approach to the LaLonde data to
see how much variation in Yi andAi an unmeasured confounder would have to explain
in order to change the estimated effect by ,.

I run the above analysis on the experimental data from LaLonde (), using a re-
gression to control for observed covariates. For this analysis, I choose the confounding
function q = α(a−), which assumes that either treated units are better off (α > ) or
worse off (α < ) in terms of earnings. In this case, we are probably most interested in
this one-sided deviation from ignorability since people that enroll in job-training pro-
grams are likely to have higher levels of inherent motivation and ability than those who
choose not to enroll. Alternatively, if the job-training program was tailored speciĕcally
to the treated group, alignment bias might be more plausible. However, since this was
a broad program meant to help as many people as possible, this type of tailoring might
be less of a concern. In general, though, it is crucial to consider these types of concerns
when choosing a confounding function.

Figure  show the results of this analysis, with several notable features. First, I plot
the results as a function of both α (le panel) and R

α(Ai) (right panel) to show the dif-
ference between the two. As expected, the estimated effect is a linear function of α and
a non-linear function of the variance explained. e reparameterization here is quite
helpful. Without any more information it is difficult to assess how large the various
values of α are relative to () the distribution of the dependent variable and () the rel-
ative impacts of other variables. With the R

α(Ai) approach, it is straightforward to plot
the covariate partial R values (× on Figure ) and there is immediate comparability
on both of these dimensions.

Second, the right panel demonstrates that the selection bias approach maintains
the major results of Imbens (). Namely, this senstivity analysis ĕnds that selection
accounting for roughly -. of the unexplained variance in Yi() would decrease
the point estimate by , (the horizontal dashed line in Figure ). On a similar
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Figure : Sensitivity analysis of the LaLonde () data on the effect of a job-training program.
e le panel plots the effect as a function of the raw confounding—that is, in the units of the
dependent variable. e right panel shows the same effects as a function of the direction of con-
founding multiplied by the proportion of unexplained variance explained by the confounding.
e × symbols are the partial R for the covariates.

note, Imbens () ĕnds that a single confounder explaining - of the variance
in treatment assignment would have to explain - of the outcome variance in order
to change the estimated treatment effect by ,. Obviously, the above confounding
function only has one parameter compared to the two parameters of the Imbens ap-
proach. Each value of the confounding function, though, implies some combination of
the Imbens parameters. To see this, imagine there is an unmeasured confounder, Ui.
e Imbens approach allows the relationship between Yi and Ui to vary independently
of the relationship betweenAi andUi. e confounding function moves these relation-
ships together: both get stronger or both get weaker as α changes. Seen in this light, the
confounding approach is conservative as a direct replacement to the Imbens approach,
since it never allows for more “robust” combinations of the Imbens parameters, where
one relationship is ĕxed and the other allowed to vary. is is why both approaches
will generally come to the same conclusion.

e selection bias analysis does, however, provide more information than the Im-
bens () approach, showing that the positive beneĕts of the job training program
disappear when α > , or when treated units tend to have higher incomes. In fact,
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looking at conĕdence intervals and statistical signiĕcance, these results are quite sensi-
tive: confounding of less than . in this direction would make the treatment effect
insigniĕcant at typical levels.⁶ us, this method provides both the severity and the di-
rection of the confounding needed to overturn the observed results, giving researchers
a broader and more comprehensive picture of the sensitivity of the results.

Matching illustration: Female judges and panel effects

In the literature on matching, there has been a vigorous debate over the speciĕc quan-
tity of interest under investigation. It is well known that matching procedures that keep
all treated units and only some control units identify the . Unless treatment effects
are constant, the  is not, in general, equal to the . us, in any matching anal-
ysis, a researcher has a choice in interpretation: assume constant effects and estimate
the  or assume no constant effects and estimate the . Crucially, the estimator
for these two scenarios is exactly the same, so that these differences are matters of in-
terpretation and assumption, not matters of procedure. It appears that the constant
effects assumption and therefore the choice of estimand makes little difference for any
causal inferences. ese equivalences break down, though, in the face of unmeasured
confounding.

To demonstrate how the choice of estimand can affect the sensitivity of estimates,
I apply the above methods to the analysis of Boyd, Epstein, and Martin (). eir
analysis investigates the effect of mixed-gender appellate judge panels in the U.S. Court
of Appeals on the vote of male judges on those panels. In particular they seek to esti-
mate the effect of having at least one woman colleague on a panel on the votes of the
male panel members. us, in this case, Ai =  corresponds to male judges on appel-
late panels with at least one female member and Ai =  are male judges on appellate
panels with all men. e dependent variable, Yi, is whether or not the male judge voted
in a liberal direction on a sex discrimination case. To uncover these effects, Boyd, Ep-
stein, and Martin () perform nearest-neighbor matching on the propensity score
(Rosenbaum and Rubin ; Ho et al., ) aer matching exactly on Court of Ap-
peals circuit and decision year of the case. In their matching analysis they keep all
treated units and match them to (multiple) control units with replacement. is pro-
cedure identiĕes the  and, under the assumption of constant treatment effects, also
identiĕes the .

Boyd, Epstein, and Martin () choose to interpret their results as the , im-
plicitly assuming constant effects, but this assumption has strong implications for the
sensitivity of their results to violations of ignorability. Figure  shows the results of
the above sensitivity analysis for the two different parameters, the  and the ,

⁶is result is consistent with Keele () who performs a sensitivity analysis in the tradition of
Rosenbaum ().
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Figure : Sensitivity analysis of the Boyd, Epstein, andMartin () data on the effect ofmixed-
gender appeal panels in the U.S. Court of Appeals. e le panels plot the sensitivity for the
 and the right panels plot the sensitivity for the . One-sided bias occurs when panels
without women aremore likely to be conservative and alignment bias occurs when the observed
gender on panels produces the most liberal outcomes compared to the reverse. e choice of
confounding function and estimand may lead to dramatically different sensitivities. e ×
symbols are the partial R for the covariates.
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and two different confounding functions. e ĕrst tests against one-sided bias and has
q = α(a − ), so that Yi() is higher (lower) for the treatment group when α > 
(α < ). Suppose that male judges on panels with women are more likely to be liberal
due to selection—say, because senior status judges in more liberal circuits with more
women are more likely to choose to sit on sex discrimination cases.

e other confounding function tests against alignment bias and has q = α, so
that the observed arrangement of mixed-gender panels produces more liberal voting
(that is, higher Yi() and Yi()) than if the arrangement was reversed. Reversing the
treatment here would put the observed males on same-sex panels onto mixed-gender
panels instead and vice versa. In this case, the treated units are aligned (or misaligned if
α < ) with higher values of the outcome. is might occur if male judges on mixed-
gender panels would have beenmore conservativewith an all-male panel than the those
on all-male panels in the data. On the other hand, those control judges would not have
been as liberal as the treated units are observed to be. is could be because judges
that are more susceptible to inĘuence by female panel members are more likely sit on
panels with women. at is, the treatment effect might be higher for judges that sit on
panels with women. While this might be less plausible in the case of judges and votes,
this alignment bias could be very important in studies were the treatment is thought to
help the units under study.

Under one-sided bias, the effect of the  becomes statistically insigniĕcant with
confounding explaining just . of the unexplained variance. us, the results for the
 to this type of ignorability violation are very sensitive. And yet if the  is the
parameter of interest, the estimates are much less sensitive: the confounding would
have to explain  of the variance to overturn the statistical signiĕcance. More in-
teresting are the results for alignment bias, where the  is slightly less sensitive and
the  sensitivity actually reverses. Positive alignment bias implies a decline in the
 toward zero, but an increase in the . is switch is a result of the assumptions
involved—the  requires only ignorability among the control units, while the 
requires ignorability over all units. Investigating sensitivity for the , one only has to
check the control units, which can push the qualitative results of the sensitivity analysis
far aĕeld, especially if the violations of ignorability imply differential treatment effects
as they do under alignment bias.⁷ What is important here is that while the choice of
assumption and parameter may leave the main estimates unchanged, they have strong
consequences for the broader implications and sensitivities of causal effects.

It is important to note that in this case we are not choosing between two confound-
ing functions, but rather, we are investigating how the estimated effect varies due to

⁷A Rosenbaum () style sensitivity analysis indicates that the results become insigniĕcant when
Γ > .. is a moderate level of sensitivity for social science research (Keele ). Of course, this
approach lacks any evidence of direction.
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these two types of ignorability violations. In order to keep the presentation and inter-
pretation simple, this approach ĕxes one type of bias at zero, while allowing the other
to vary. In principle, both types of bias might be present at the same time, which might
amplify or dampen the estimated biases. Detecting more complicated biases would
require more complicated confounding functions.

Weighting example: Dynamic causal inference and the effect of negativity on
turnout

A core question in the study of American politics is what inspires or discourages citi-
zens to turn out to vote. Many scholars focus on the question of how a campaign, and
speciĕcally the tone of campaign advertising, can affect electoral participation.⁸ Obser-
vational studies of turnout rely on summaries of the overall campaign advertising tone
and its effect on the percent turnout, controlling for various aspects of the candidates
and the campaign itself (Ansolabehere et al. ; Finkel andGeer ; Ansolabehere,
Iyengar, and Simon ; Brooks ). is approach, however, ignores the issues of
dynamic causal inference (Blackwell a; Robins, ; Robins, Hernán, and Brum-
back, ) that lead to serious biases that matching and regression cannot solve. In
this illustration, I analyze new data to show that the above framework adapts easily into
the dynamic setting.

To investigate both the effect of negativity on turnout and the sensitivity of this
effect, I use data on  U.S. Senate and Gubernatorial campaigns from  to . I
use amarginal structural model (), combinedwith inverse probability of treatment
weighting (), to estimate the effect of late-campaignDemocratic negativity (that is,
negativity during October and November) on the turnout in the election, conditional
on a set of baseline variables.⁹ In general, it is acceptable to include these baseline
covariates in a regression model of a dynamic treatment on an outcome, but including
dynamic confounders can lead to post-treatment bias (Blackwell a). Of course,
omitting these confounders ignores their effect on subsequent treatment decisions and
can lead to omitted variable bias. In this example, the percent undecided in a race may
be inĘuenced by past negativity if negative ads tend to activate partisan feelings and
may also affect the decision for candidates to go negative in the future. is variable
is likely also correlated with the ĕnal turnout in the election. A variable like this, that
both affects and is affected by the treatment, is called a time-varying confounder.

⁸Lau, Sigelman, and Rovner () provides a meta-analysis of studies attempting to pinpoint the
effects of negative advertising on various political outcomes, including turnout.

⁹e baseline variables here include support in polls for the Democratic candidate aer the primary,
percent undecided aer the primary, whether the Democratic candidate was the incumbent, the Con-
gressional Quarterly rating of seat competitiveness, office, campaign length in weeks and ĕxed effects for
election cycle.
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Since the addition of time-varying confounders to a marginal structural model
would induce bias, I instead remove the effect of these variables byweighting. As shown
by Robins, Hernán, and Brumback (), weighting by the inverse of the propen-
sity score for the entire treatment history as a function of time-varying confounders
will remove the omitted variable bias of these confounders without introducing post-
treatment bias. is result, though, only holds under the assumption of sequential ig-
norability, the generalization of the ignorability assumption to the dynamic case. For-
tunately, the sensitivity analysis approach works even in this case by applying the con-
founding function to each time period.

Let Ait be the treatment in a given period, Ait = (Ai, . . . ,Ait) be the treatment
history up to time t, and Ai = AiT be the entire treatment history. Let a, at, and a be
a representative value of these variables and deĕne similar variables and values for X.
is notation helps generalize Assumption  to dynamic situations.

Assumption  (Sequential Ignorability). For every treatment history a and time-period t,
Yi(a) ⊥⊥ Ait|Xit,Ait−.

is assumption states that, conditional on the treatment and covariate histories up
to t, the treatment status in period t is independent of the potential outcomes. In this
setting the confounding function becomes

qt(a, xt) = E[Y(a)|At = at,At− = at−,Xt = xt]
− E[Y(a)|At =  − at,At− = at−,Xt = xt].

()

Here, qt represents how the treated and control units differ in some period t, when
they share the same treatment and covariate histories up to t. Again, when sequential
ignorability holds, then qt = . One can write this time-varying confounding function
in terms of a single parameter,

qt(a, xt; α) = α(at − ), ()

which implies that when α > , negative campaigns tend to have higher turnouts than
positive campaigns. is might capture some underlying attention or enthusiasm for
the race that is not captured in the baseline or time-varying covariates. Brumback et
al. () show that for a given confounding function, an adjusted outcome can elim-
inate the bias due to confounding, just as in the single-shot case. With a time-varying
treatment, the adjusted outcome becomes:

Yα
i = Yi −

T∑
t=

qt(Ai,Xit; α) · Pr(At =  − Ait|Ait−,Xit). ()
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is is simply the time-varying generalization of (). is adjustment subtracts the
sum of the assumed confounding of a treatment history multiplied by the probability
of reaching that treatment history. Conveniently, the last term of () is a function of
the time-varying propensity score used in the  estimation.

To calculate the weights, I model Ait as a function of past Democrat negativity,
Democratic support in the polls at time t, percent undecided at time t, and past Repub-
lican negativity in the race.Ƭ⁰ In the weighted , I allow the effect of negativity to
vary by the incumbency status of the Democratic candidate and ĕnd that an additional
week of negative advertising late in the campaign leads to roughly a two percentage
point increase in turnout for Democratic incumbents and no effect for Democratic
nonincumbents.ƬƬ e effect for incumbents is statistically signiĕcant, and yet one
might worry that incumbents going negative is an indication of a more interesting race
because of challenger quality or incumbent weakness not captured by polling. Figure 
shows how deviations from sequential ignorability affect these estimates. e x-axis
again is the amount of unexplained variance explained by the confounding. In fact,
these results are quite insensitive: this confounding would have to explain close to half
of the unexplained variance in order to overturn these results. is value is so high
partially because the confounding compounds over time, so that even small values of
α end up explaining quite large amounts of the variance. us, this senstivity analysis
procedure can help support results even in situations fairly far away from the typical
regression or matching situations researchers face.

 Discussion and conclusion

Following Robins () and Brumback et al. (), this paper proposes a method
of sensitivity analysis that tests speciĕc deviations from ignorability to see how these
deviations affect estimates. is approach is critique-based—if one gives an alternative
story to the estimated effect, this sensitivity analysis can investigate and respond to that
exact story. In addition, I introduce a convenient reparameterization of the confound-
ing function and show how themethodworks with the threemain approaches to causal
inference: regression, matching, and weighting. Further, this approach ĕts easily into
the dynamic causal inference framework and can provide insight into how the chosen
estimand affects the sensitivity of its estimates.

As with all methods, there are limitations to this approach to sensitivity analysis.
First and foremost, it relies on a “selection on the observeables” assumption at its core,
so that it is incompatible with certain other approaches to causal inference such as in-

Ƭ⁰I estimated separate weights for incumbents and non-incumbents, with a subset of these variables
for either chosen on the basis of which produced the best balance.

ƬƬA candidates goes negative in a given week if more than  of their ads mention the opponent.
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Figure : Sensitivity analysis of the effect of Democratic negativity on turnout in Senate and
Gubernatorial elections. Conĕdence intervals are bootstrapped to account for variation in the
weighting model.

strumental variables. It may be the case, though, that an instrument could provide
evidence for the amount of unmeasured confounding. Future research should investi-
gate how these approaches could interact. Second, this approach requires an estimate
of the propensity score, which may or may not be part of an analyst’s estimation strat-
egy. If it is not, then this requires additional modeling that may be difficult, depending
on the empirical problem. Last, demonstrating a result is insensitive to a speciĕc con-
founding function over a speciĕc set of parameters does not imply the estimated effect
is truly causal. ere could always be confounding that is greater in magnitude than
the sensitivity analysis has assumed.

ere are many avenues for progress on sensitivity analyses for causal inference.
To ease exposition, this paper has focused on rather simple functional forms for the
confounding function, but the framework itself does not impose these limits. A covari-
ate might affect the degree of confounding in either one-sided bias (q = α(a − )x)
or alignment bias (q = αx). ese alternative forms only modify the confounding
function and leave the rest of the calculations and intuitions unchanged. Future work
should explore how and when these more complex selection biases might affect infer-
ences in the social sciences. Furthermore, the relationship between the estimand and
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its sensitivity are raised here, but only brieĘy. e full implications of these results
could provide guidance to individuals deciding between different causal quantities of
interest.
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