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Abstract
Analyzing variation in treatment effects across subsets of the population is an important way for social scien-

tists to evaluate theoretical arguments. A common strategy in assessing such treatment effect heterogeneity

is to include a multiplicative interaction term between the treatment and a hypothesized effect modifier

in a regression model. Unfortunately, this approach can result in biased inferences due to unmodeled

interactions between the effect modifier and other covariates, and including these interactions can lead to

unstable estimates due to overfitting. In this paper,we explore the usefulness ofmachine learning algorithms

for stabilizing these estimates and show howmany off-the-shelf adaptivemethods lead to two forms of bias:

direct and indirect regularization bias. To overcome these issues, we use a post-double selection approach

that utilizes several lasso estimators to select the interactions to include in the final model. We extend this

approach to estimate uncertainty for both interaction andmarginal effects. Simulation evidence shows that

this approachhasbetter performance than competingmethods, evenwhen thenumberof covariates is large.

We show in two empirical examples that the choice of method leads to dramatically different conclusions

about effect heterogeneity.

Keywords: interactions, regression, machine learning, lasso

1 Introduction

The social andpoliticalworlds are full of heterogeneity. Exploring suchheterogeneity in treatment

effects has become an important and widely used approach in applied social science research.

Indeed, examining varying treatment effects allows scholars toevaluate competing theories about

social science phenomena and to better understand mechanisms behind some causal effect.

For example, seeing an effect of remittances on political protest in nondemocracies but not in

democracies rules out potential mechanisms that would be common to both types of countries.

Reliable estimates of effect heterogeneity may also help decision-makers target their efforts to

achieve the most positive impact.

The standard approach to testing these hypotheses is to add a singlemultiplicative interaction

between themain variable of interest and the hypothesizedmoderator to a “baseline” regression

model. A large literature in political methodology has helped clarify these estimands with a par-

ticular focus on interpretation, visualization, and sensitivity to hidden assumptions (Braumoeller

2004; Brambor, Clark, and Golder 2006; Franzese and Kam 2009; Berry, DeMeritt, and Esarey

2010; Kam and Trussler 2017; Bansak 2021; Esarey and Sumner 2018; Hainmueller, Mummolo,

and Xu 2019; Beiser-McGrath and Beiser-McGrath 2020). Together, these studies have dramatically

improved applied researchers’ use and presentation of interactive models. Most of these papers,

however, focus on situations where, aside from the interaction itself, the regression model is

correctly specified.

In this article, we build on this literature and focus on a key potential problem in estimating

interaction effects raised by Beiser-McGrath and Beiser-McGrath (2020): how the misspecification
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of “base effects” of the moderator can lead to dramatically biased estimates of the treatment–

moderator interaction. In particular, when a researcher adds a single treatment–moderator inter-

action to a regression model, they are implicitly assuming no additional interactions between

the moderator and other covariates in the model. If the relationship between the covariates and

the outcome also depends on the moderator, a naive application of the single-interaction model

can lead to what we call omitted interaction bias, a form of model misspecification that can be

severe.Weargue that this typeofmoderator–covariate interaction is likely tohold inobservational

data but o�en goes unnoticed by applied researchers. This source of bias has been noted in a

handful of papers in statistics andpoliticalmethodology (Vansteelandt et al. 2008; Beiser-McGrath

and Beiser-McGrath 2020) but is only rarely discussed or addressed in applied political science

research.

If single-interaction terms can create such bias, what alternative do applied researchers have?

Oneapproach, analogous to a split-sample strategywith adiscretemoderator, is to simply interact

the moderator with treatment and all covariates in what we call a “fully moderated model.”

For applied researchers interested in checking the robustness of their single-interaction model

point estimates to more flexible specifications, this fully interacted approach may be sufficient.

Unfortunately, this fully moderated approach can lead to overfitting of the regression model

when there aremany covariates, possibly leading to unstable estimates and large standard errors.

To avoid these problems, recent work has proposed data-driven approaches to guard against

model misspecification (Beiser-McGrath and Beiser-McGrath 2020). Intuitively, the goal of these

approaches is to use machine learning to select the “correct” interactions or nonlinearities based

on their predictive power.

In this paper, we demonstrate how these previously proposedmethods can be poorly suited to

mitigating omitted interaction bias and propose an alternative data-driven approach that avoids

these issues. In particular, we show that standard machine learning algorithms have two flaws

for this task, both of which are forms of regularization bias. First, machine learning algorithmswill

usually shrink all effects toward zero even for effects and interactions of theoretical interest, which

we call direct regularization bias. Second, because these algorithms focus on predictive accuracy

for the outcome alone, they may overregularize variables or interactions that are important

predictors of the independent variable of interest (here, the treatment–moderator interaction),

leading to what we call indirect regularization bias. When combined, these regularization biases

in standard machine learning algorithms can produce biases that are worse than the omitted

interaction bias they intend to solve.

To address both of these issues, we adapt the post-double selection (PDS) approach of Belloni,

Chernozhukov, and Hansen (2014a) to this problem. This method is a variant of the lasso, or L1-

regularization, a popular technique for prediction that produces sparse models, or models that

have many estimated coefficients set to zero. PDS avoids direct regularization bias by only using

the lasso for model selection, not estimation; it solves the problem of indirect regularization bias

by using the lasso on both the outcome and the treatment–moderator interaction and taking

the union of variables selected by those models as the conditioning set. This approach allows

us to guard against large biases due to misspecification while reducing inclusion of irrelevant

interactions that reduce statistical efficiency. Finally, we propose a new variance estimator for the

PDS approach that captures the covariance between estimated coefficients, which allows for the

estimation of uncertainty estimates for both the interaction andmarginal effects.

This paper joins studies such as Brambor et al. (2006), Franzese and Kam (2009), Hainmueller

et al. (2019), and Beiser-McGrath and Beiser-McGrath (2020) in offering applied researchers

easy-to-implement solutions to potentially serious problems encountered when estimating and

interpreting interactive regression models. Our paper is most closely related to Beiser-McGrath
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and Beiser-McGrath (2020), a recent paper that describes the bias inherent in omitting product

terms in regression models and uses simulations to assess the performance of various machine

learning methods in this setting. We build on their approach by highlighting the potential

for regularization bias and how it can be avoided with PDS. In our simulation study, we find

that adaptive approaches they investigate (Bayesian additive regression trees [BART], kernel-

regularized least squares [KRLS], and the adaptive lasso) can have significantly higher bias

compared to PDS in many realistic scenarios.

Our approach balances two distinct approaches to social science inquiry. On the one hand,

the research tradition that we most directly enter into is that of theory testing. Specifically, we

assume that a researcher has a hypothesis, derived through theory-building, that the relationship

between two variables is moderated by a third. The tools we develop are therefore intended to

be used in “confirmatory” analyses that seek to establish the existence of such a relationship. In

developing our intuitions and solutions, however, we draw on a broad literature using machine

learning to characterize the heterogeneity of treatment effects in terms of some subset of the

high-dimensional covariates (Imai and Ratkovic 2013; Ratkovic and Tingley 2017; Künzel et al.

2019). These studies, however, tend to have an exploratory, rather than confirmatory, orientation,

seeking to use data to uncover relationships, rather than examining a particular quantity of

theoretical interest. Importantly, our approach neither replaces nor does it rule out the use of

additional theory toguideanalyses. Researchersmight choosenot touseour suggestedestimator,

but instead to further develop theory to guide which covariate–moderator interactions to include

in amodel. Theymight useour preferred estimator, but as a robustness check to establishwhether

hypothesized covariate–moderators succeed in eliminating bias. Or theymight simply use PDS as

a first approach, allowing theory to guide the choice of quantity of interest and covariate selection,

but using data to guide the unbiased estimation of the precise functional form.

Our article proceeds as follows. First, we describe the basic setting and formally demonstrate

how model misspecification for interactions can occur. We do so in the common and straight-

forward case of linear regression, and also in a nonparametric setting that allows us to clearly

define causal quantities of interest. We then introduce variousmachine learningmethods to solve

this problem and describe the regularization biases they may generate. Next, we explore the PDS

approach, including our proposed variance estimator and our extension for handling fixed effects

in this setting. We demonstrate the relative strengths of different estimation approaches using a

simulation study, and show thepotential importance of the issue using twoempirical illustrations.

We conclude with thoughts about best practices with interaction terms.

2 The Problem

2.1 Multiplicative Interactions in Linear Models
We first review thecoreproblemofomittedmoderator–covariate interactions (Beiser-McGrathand

Beiser-McGrath 2020). Suppose we have a random sample from a population of interest labeled

i = 1, . . . ,N . For each unit in the sample, wemeasure the causal variable of interest, or treatment,

Di , an outcome Yi , a potential moderator Vi , and a K × 1 vector of additional controls, Xi . In

particular, we are interested in how the effect of Di onYi varies across levels ofVi , controlling for

the additional covariates,Xi . We consider the following “base” regressionmodel that a researcher

might use to assess the effect of treatment:

Yi = α0+α1Di +α2Vi +X ′
i α3+ εi1. (1)

A common way to assess treatment effect heterogeneity is to augment this model with a single

multiplicative interaction term between the treatment and the moderator, which we call the
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Figure 1. An simulated example of model misspecification in interaction models.

single-interaction model:

Yi = β0+β1Di +β2Vi +X ′
i β3+β4DiVi + εi2, (2)

where β4 is the quantity of interest.

An alternative estimation strategy that may, at first glance, appear equivalent to (2) is to

estimate the base model (1) within levels ofVi (obviously omitting the α2Vi term). From standard

results on the linear regression, these two approaches will be equivalent when there are no

additional covariates, Xi , in these models. When those covariates are present, however, they can

differ substantially. Figure 1 shows a simulated example of this in action, with a single Xi , and

binary Di and Vi (the full simulation code is available in the replication archive). Here, we see

thatwhen running the single-interactionmodel (2), it appears as if there is no effect heterogeneity

across levels ofVi , but when we split the sample onVi , there is a large and meaningful difference

in effects, one that aligns with the true value of the interaction.

Why does the split-sample approach capture the true interaction effect in this case when the

single-interaction model cannot? It is helpful to note that the split sample approach is equivalent

to running a fully moderatedmodel, whereVi is interacted with all of the variables:

Yi = δ0+ δ1Di + δ2Vi +X ′
i δ3+ δ4DiVi +ViX

′
i δ5+ εi3. (3)

If this model represents the true data-generating process, then using ordinary least squares (OLS)

to estimate the single-interaction model will result in a biased estimator for the interaction of

interest, β̂4. Under the standard omitted variable bias formula, we have β̂4
p
→δ4 + γ ′v δ5, where

γv is the population regression coefficients of the ViXi interactions on DiVi , controlling for the

other variables in the single-interaction model. Thus, the single-interaction model can produce

misleading estimates when (a) the treatment–moderator interaction is predictive of the omitted

interactions, and (b) the omitted interactions are important for predicting the outcome. Thus,

an estimated interaction from a single-interaction model could be due to the moderator as

hypothesized or due to some unmodeled heterogeneity in the interactive effects. We refer to this

possible bias, γ ′v δ5, as omitted interaction bias. Note that the inclusion of treatment–covariate

interactions (DiXi ) does not fully address this issue, because these donot account for interactions

between the moderator and the covariates.

Intuitively, this type of omitted interaction bias occurs because the covariates have differ-

ent relationships with the outcome across levels of the moderator. In the split-sample or fully
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moderatedapproaches, this variation in the conditional relationshipbetweenXi andYi is allowed,

whereas in the single-interaction model, it is assumed away. Thus, even if a scholar is convinced

that they have chosen the correct model for the baseline regression, hypothesized moderators

pose a new challenge. There are a few settings where we might expect this omitted interaction

bias to be zero. In particular, there will be no such bias when treatment Di , the moderator Vi ,

and covariates Xi are all randomized, as would be the case in a factorial or conjoint experiment.

In those cases, γv = 0, and so there will be no omitted interaction bias. Thus, our discussion

here most closely applies to situations where Xi represents a set of observational controls where

independence will almost certainly be violated.1

2.2 Nonparametric Analysis and Interactions as Modeling Assumptions
While a linear regression context is perhaps the most intuitive—and immediately useful—way to

understand the omitted interaction bias issue, most scholars use linear regression not as an end

in itself but rather as a tool to estimate causal inferences about social and political phenomena.

Thus, it is valuable to define our causal quantities of interest and assumptions in a nonparametric

setting.

We now explicitly focus on estimating the causal effect of Di and how that effect varies by the

effect modifierVi . LetYi (d ) be the potential outcome for unit iwhen treatment is at level d, so the

average treatment effect is defined as τ(d ,d ∗) = Å[Yi (d )−Yi (d
∗)]. We can connect the potential

outcomes to the observed outcomes with a consistency assumption thatYi =Yi (d ) when Di = d .

With a binarymoderator, we can define the interaction between the treatment and themoderator

as follows:

δ(d ,d ∗) = Å[Yi (d )−Yi (d
∗) |Vi = 1] −Å[Yi (d )−Yi (d

∗) |Vi = 0] . (4)

Note that we are not explicitly considering causal interactions (VanderWeele 2015; Bansak 2021),

wherein the interaction effect is defined in terms of joint potential outcomes, Yi (d ,v ), and can

itself be interpreted causally. To use these joint counterfactuals, researchers would need to

identify both the causal effect ofVi and Di . Our main focus, instead, is on unbiased estimation of

causal effect heterogeneity,withoutnecessarily beingable to causally attribute that heterogeneity

to the moderator Vi . Of course, our approach does not preclude causal interpretation of the

moderator andcould in fact facilitateacausal interpretationof the interaction if that interpretation

rests on a “selection on observables” assumption or, as we describe below, a functional form

assumption.

When attempting to estimate these types of causal effects, it is helpful to classify assumptions

into two types: identificationassumptionsandmodelingassumptions. Identificationassumptions

are those that allow us to connect causal (i.e., counterfactual) quantities of interest to statisti-

cal parameters of an observable population distribution. For instance, a common assumption

invoked in observational studies to estimate a causal effect in the above base regression model

would be “no unmeasured confounding,” or Yi (d )⊥⊥Di | Vi ,Xi , where A⊥⊥B | C means that A

is independent of B conditional on C. Under this identification assumption, we can connect the

conditional expectation of the potential outcomes to conditional expectation of the observed

outcome, Å[Yi (d ) | Vi ,Xi ] = Å[Yi | Di = d ,Vi ,Xi ]. Thus, the interaction between Di and Vi is

1 Given the observational context in which we expect our estimator to prove most valuable, we emphasize that estimated
coefficients for control variables, including covariate–moderator interactions, will generally not be interpretable as causal
effects absent a strong theoretical justification or causal identification strategy. See Keele, Stevenson, and Elwert (2020)
for a full discussion of when control variables can be interpreted causally.
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nonparametrically identified as

δ(d ,d ∗) =

∫
x ∈X

(Å[Yi | Di = 1,Vi = 1,Xi = x ]

−Å[Yi | Di = 0,Vi = 1,Xi = x ])dFX |V (x |Vi = 1)

−

∫
x ∈X

(Å[Yi | Di = 1,Vi = 0,Xi = x ]

−Å[Yi | Di = 0,Vi = 0,Xi = x ])dFX |V (x |Vi = 0), (5)

where FX |V (x |v ) is the distribution function of Xi given Vi . This result is nonparametric in the

sense that it places no restrictions on the joint distribution of the observed data. In particular, the

interaction is identified from the data before we make any assumptions about what interaction

terms “belong” in the regression models. Omitted variable bias usually refers to the case when

no unmeasured confounding (the key identification assumption) is incorrect, but there is an

additional variable, Zi , that, if added toXi , would ensure that the assumption would hold.

Once we have identified the causal effect, the task becomes purely a statistical exercise of

estimating conditional expectation functions (CEFs) Å[Yi |Di ,Vi ,Xi ]. When there are very few

discrete covariates, itmightbepossible toestimate theseCEFsbyestimating samplemeanswithin

levels of Xi , but when there more than a handful of covariates or if any of the covariates are

continuous, this approachwill not be feasible due to the curse of dimensionality. Thus, in order to

estimate this statistical quantity of interest, researchers will o�en invoke modeling assumptions,

which are restrictions on the population distribution of the observed data. For example, linearity

of the observable CEF in terms of Xi is a modeling assumption, because it places restrictions

on the conditional relationship between Xi andYi . The various assumptions about interactions

in the above linear models are modeling assumptions and imply simplified expressions for the

quantity δ(d ,d ∗). For instance, under the base regressionmodel, we have δ(d ,d ∗) = 0, whereas in

the single-interaction model, we have δ(d ,d ∗) = β4 × (d − d ∗), and in the fully moderated model,

we have δ(d ,d ∗) = δ4× (d −d ∗).

Modeling assumptions aredistinct from identificationassumptions. The identificationassump-

tion of no unmeasured confounders tells us that we must condition on Xi , but it does not tell

us how to do so. Should it be linear? Should we include interactions between the covariates?

Shouldwe include polynomial functions of the covariates? These are all decisions aboutmodeling

assumptions, and while they are statistical in nature, these choices can impact the estimation of

causal effects. When these modeling assumptions are incorrect, we havemodel misspecification,

which can lead to bias for our estimates of the relevant CEF and, in turn, bias for the causal

effect. Thus, violations of both identification and modeling assumptions can lead to biased

or inconsistent estimators. Importantly, however, identification assumptions cannot usually be

verified or falsified directly by the data, whereas modeling assumptions can always be relaxed

to reduce bias at the expense of additional variability in the estimates. For example, the fully

moderatedmodel will reduce bias relative to the single-interactionmodel, since it is more flexible

and thus better able to produce an accurate approximation to the underlying CEF of interest,

Å[Yi |Di ,Vi ,Xi ]. Of course, the reduction of bias comes at the cost of increased uncertainty due

to overfitting. Finally, this distinction suggests how our approach may apply in contexts where

researchers estimate “causal interactions”: even if a researcher has correctly identified which

variables confound estimates of the interaction, model misspecification (such as linearity, or, as

weemphasize here, omitted covariate–moderator interactions) canprecludeunbiased estimation

of causal effects.

This bias-variance trade-off with modeling assumptions suggests that they are amenable to

weakening with data-driven machine learning methods. This is because, given the identification
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assumptions, the task of estimating the CEF of interest,Å[Yi | Di ,Vi ,Xi ], is just curve fitting, which

is a suitable task for many machine learning methods. Below, we leverage this use of adaptive

methods to estimate interactions with weaker modeling assumptions while guarding against

overfitting. We should emphasize that using machine learning in this way to weaken modeling

assumptions is not the same as discovering the important causal factors for Yi among all the

covariates. The variables inXi mayando�endohave causal relationshipswithboth the treatment

and the outcomes (as captured in the identification assumption), but there is no reason to expect

∂Å[Yi | Di ,Vi ,Xi ]/∂Xi to equal any causal effect. Thus, we do not need to worry about having to

estimate the causal effects ofXi to obtain good estimates of the causal effect ofDi onYi and how

it varies by levels ofVi .

Finally, we note that the choice of modeling assumptions is sometimes confused with the

choice of quantity of interest. For example, researchers o�en use the above base regression that

omits an interaction between Di andVi in part, because they are targeting the average or overall

effect of treatment. They then turn to alternative modeling assumptions—those encoded in the

single-interaction model—when their quantity of interest changes to the effect heterogeneity

of Di across Vi . This practice, while commonplace, is not required, since researchers can use

fully moderated models to recover average treatment effects even though such effects are not

encoded in a single parameter of the model. Thus, many of the same modeling decisions we

discuss here could also be used when targeting the average treatment effect. Indeed, previous

work has emphasized that running separate regression models for treatment and control groups

(and implicitly including treatment–covariate interactions) is a good way to estimate the overall

effect (Imbens 2004). The specific choice ofXiVi interactions, though, is o�enmore consequential

for estimation of the DiVi interaction (rather than the main effect of Di ) because of the inclusion

ofVi in both multiplicative terms.

3 Flexible Estimation Methods for Interactions

How can scholars avoid the misspecification of the single-interaction model? We explore several

possibilities that address the omitted interactions problem and highlight their advantages and

drawbacks. While much of the discussion in this paper revolves around the moderator–covariate

interactions, both of the approaches outlined below can also incorporate treatment–covariate

interactions or even covariate nonlinearities in a straightforward manner.

The most straightforward strategy for avoiding the misspecification of the single-interaction

model is to simply estimate the fully moderated model (3). This is equivalent to split-sample

estimation when the moderator is binary, but allows for other types of moderators as well. For

full flexibility, themoderatormust be interacted not onlywith observable covariates, but alsowith

controls for unobservedunit or time fixed effects, if they are included in themodel. The estimation

and interpretation of the marginal effects of the treatment and the interaction remain similar

to the single-interaction model (2). One concern with a fully moderated model is the dramatic

proliferation of parameters that it generates. Adding an interaction between the moderator and

all covariates will nearly double the number of parameters to be estimated in the model, which is

problematic in models with large numbers of covariates or fixed effects.

3.1 Adaptive Methods: The Potential for Regularization Bias
As a solution to these concerns, recent work has proposed using regularization to guard against

overfitting. Beiser-McGrath and Beiser-McGrath (2020) tested and compared the performance of

several flexible methods for tackling this problem, including the adaptive lasso (Zou 2006), KRLS

(Hainmueller andHazlett 2014), andBART (Chipman, George, andMcCulloch 2010). All of these are

data-drivenmethods for selecting the correct functional formof a conditional expectationwithout

having to make strong theoretical restrictions on the data-generating process.

Matthew Blackwell and Michael P. Olson ` Political Analysis 7

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 H

ar
va

rd
-S

m
ith

so
ni

an
 C

en
te

rf
or

 A
st

ro
ph

ys
ic

s,
 o

n 
01

 D
ec

 2
02

1 
at

 0
1:

58
:4

1,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/p

an
.2

02
1.

19

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/pan.2021.19


Each of thesemachine learning approaches to estimating interactionsworks in a differentway,

but they all share two limitations that can lead to biased estimates. First, each of these methods

regularizes the entire response surface, including any potential relationship or interaction of

theoretical interest. Thus, any regularization will serve to bias estimates of the interaction of

interest, sometimes severely, which we call direct regularization bias. This bias is due to the goals

of these regularization methods: they are designed to predict the outcome well, not necessarily

to estimate the “effect” or interaction of any particular variable.2 Second, all of these methods

focus on estimating the conditional expectation of the outcome and so may overregularize the

effects of some variables or interactions that are relatively unimportant for the outcome but are

relatively important for the treatment or treatment–moderator interaction. This attenuationof the

covariate–outcome relationships can lead to omitted variable bias for the effect of interest, which

we call indirect regularization bias.

Whenmight these biases occur in applied research? Direct regularization bias is a fundamental

byproduct of these flexible methods and will occur unless the parameters of interest are very

large in magnitude. Indirect regularization bias is more subtle and depends on how strongly

the covariates (and covariate–moderator interactions) covary with the outcome and treatment

(Belloni et al. 2014a). When covariates are unrelated to the treatment, using the outcome model

alone will work well and there will be little indirect regularization bias. And this type of bias will

be strongest when there are covariates that are strongly related to the treatment, but only weakly

related to the outcome. In this case, for instance, the standard lasso applied to the outcomemight

set the coefficients on these variables to zero, leading to large biases for the coefficients on Di

and DiVi . This is because the indirect regularization bias is a form of omitted variable bias and

is a function of the product of the outcome–covariate relationship and the treatment–covariate

relationship. We view this type of covariate to be potentially very common in empirical work.

Finally, we note that while we focus on how these biases manifest for interactions, they can both

occur for main effects as well, as discussed by Belloni et al. (2014a).

3.2 Mitigating Regularization Bias with Post-Double Selection
Toavoidbothdirect and indirect regularizationbias and toperform inferenceon thekeyquantities

of interest, we apply the PDS procedure of Belloni et al. (2014a), which builds on the standard

lasso approach to regularization (Tibshirani 1996). The lasso is a penalized regression procedure

that induces sparsity, so that many of the coefficients are estimated to be precisely zero, making

it subject to the same two regularization biases described above. PDS, on the other hand, takes

the estimation of treatment effects or some other low-dimensional parameter as its explicit goal,

making it ideally suited toour application. This procedure uses the lassowithdata-dependent and

covariate-specific penalties for variable selection and applies the lasso to not only the outcome

but also the main independent variables of interest (here, Di and DiVi ). Finally, the union of the

selected variables is passed to a standard least-squares regression, which will include variables

that predict any of these variables well. By using the union of variables selected to predict both

the outcome and the independent variables of interest well (the “double selection” in PDS), this

procedure minimizes the potential for indirect regularization bias omitted variable bias due to

incorrect model selection by the lasso. And by using standard OLS for the final estimation a�er

these lasso steps (the “post” in PDS), we avoid the direct regularization bias of the standard lasso.

To apply thePDSapproach to the current setting,we take themain effectDi and the interaction

DiVi as themainvariablesof interest and letZ
′
i
= [Vi X

′
i
ViX

′
i
] be thevectorof remainingvariables

from the fully moderated model (where we assume they have been mean centered). We then run

2 The adaptive lasso can avoid this type of bias under the strong assumption that the true data-generating process is sparse,
where many of the coefficients in the model are exactly equal to zero (Zou 2006). This property, along with its ability to
correctly select nonzero coefficients, is called the oracle property.
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lasso regressions with each of {Yi ,Di ,DiVi } as dependent variables and Zi as the independent

variables in eachmodel, using thedata-drivenpenalty loadings suitably adjusted for the clustering

in our applications (Belloni et al. 2016).

γ̂y = arg min
γy

N∑
i=1

(Yi −Z ′
i γy )

2+

k∑
j=1

λy j |γy j |. (6)

γ̂d = arg min
γd

N∑
i=1

(Di −Z ′
i γd )

2+

k∑
j=1

λdj |γdj |. (7)

γ̂dv = arg min
γdv

N∑
i=1

(DiVi −Z ′
i γdv )

2+

k∑
j=1

λdv j |γdv j |. (8)

Let Z ∗
i
be a vector of the subset of Zi that has either γ̂y , γ̂d , or γ̂dv not equal to zero. The final step

of PDS is to regressYi on {Di ,DiVi ,Z
∗
i
} using OLS.

Belloni et al. (2014a) showed that, under regularity conditions, this procedure will give consis-

tent estimates of the coefficients of interest and the standard robust or cluster-robust sandwich

estimators for the standard errors will be asymptotically correct. The key regularity condition of

this approach is approximate sparsity, which states that the CEFs of each of the outcomes given

Zi can bewell approximated by a sparse subset of Zi and that the size of this sparse subset grows

slowly relative to the sample size.3 This is a considerably weaker condition than the usual sparsity

requirement of the lasso, where many of the covariates must have exact zero coefficients. This

assumption also fits well with the context of moderator–covariate interactions, which we might

be willing to believe are mostly small but not exactly zero.

The asymptotic results of Belloni et al. (2014a) are valid for high-dimensionalmodels, where the

number of covariates or parameters in the model grows with the sample size. Our discussion, on

the other hand, has focused on amodel where the number of covariates is fixed but could be large

onceallXiVi interactionsareadded to themodel. Theusual asymptotic results for fixed-parameter

models would imply that the fully moderated model should outperform the PDS approach, but

asymptotic results are only useful insofar as they predict performance in finite, realistic sample

sizes which we investigate in the simulations below. Furthermore, when the number of covariates

is large relative to the sample size, the fully moderated model will become either unstable or not

possible to calculate, but PDS should maintain its desirable properties.

The penalty loadings in the lasso selection models vary by both the outcome in the lasso and

the covariate. In order to achieve consistency and asymptotic normality, these loadings must be

chosen carefully. Belloni et al. (2014a) show that the ideal penalty loadings are a function of the

interaction between the covariates and the error for that outcome. For instance, for the outcome,

we have λy j = λy0

√
(1/N )

∑N
i=1 Z

2
i j
ε2
y i
. Intuitively, this regularizes variables more if their “noise”

correlates with the error. These infeasible loadings can be estimated using a first-step lasso to

provide estimates of the error, ε̂y i , as with robust variance estimators. Belloni et al. (2014a) show

that this procedure (along with a carefully chosen value of the λy0) ensures consistency and

asymptotic normality even when the errors are nonnormal and heteroskedastic.

It is possible to override the lasso selections and force the inclusion of some variables in the

final model. In the empirical examples below, we forceVi andXi to be included in the final model

3 For example, let Z ′
i
γy0 be a sparse approximation to the outcome CEF in that the number of nonzero values in γy0 is less

than some fixed values s. Define the approximation error ri = Å[Yi | Zi ] − Z ′
i
γy0. Then, a CEF is approximately sparse if

(Å[N −1∑
i r

2
i
])1/2 ≤ C

√
s/N as N →∞.
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selection, regardless of how the lasso estimates their coefficients. This helps isolate the change in

the estimated interactions due to interactionmodeling alone and ensures that the original model

for the marginal effect of Di is nested in the model for effect heterogeneity. A second benefit of

this modeling choice is that it avoids a situation where the lasso estimates base terms of, say, Xi j

are zero, but selects the interactionViXi j to be included in the model.

We expect that, in many settings, PDS will have good statistical properties as demonstrated by

the simulation evidence below. When might it be less useful compared to other methods? First,

if most of the covariate–moderator interactions are completely unrelated (or almost unrelated)

to the treatment, then it may be more efficient to only use the outcome for model selection,

which we call post-single selection. In the Supplementary Material, we show that a post-single

selection lasso (which eliminates the possibility of direct regularization bias) can have lower root-

mean-square error (RMSE) compared to PDS in that setting, although it does performworse when

covariate–moderator interactions are strongly related to treatment. In addition, PDS can fail when

there are many covariates and the covariate effects are “dense” in the sense that a large fraction

of the coefficients are far from zero. Of course, this is a difficult setting for most flexible methods,

as our simulations below highlight. Finally, with a small number of covariates, we find that a fully

moderated model performs just as well as any flexible method and so that may be a good option

for many applied settings.

3.3 Variance Estimator for Interactions A�er Post-Double Selection
In the interaction setting,weareo�en interested inmaking inferencesonboth the interaction term

itself and various marginal effects of the main treatment. This task requires joint inference for all

parameters and, in particular, the covariance between the lower-order and interaction terms. The

original PDS approach of Belloni et al. (2014a) handledmultiple parameters of interest by applying

the approach for a single parameter to each variable of interest separately, which does not allow

for this type of joint inference.4 In particular, their procedure involves separate regressions ofYi

on {Di ,Z
∗
i
} andYi on {DiVi ,Z

∗
i
}.

We propose an alternative variance estimator that also estimates the covariance between the

estimated effects ofDi andDiVi in order to quantify uncertainty formarginal effects. In particular,

we define Ỹi , D̃i , and D̃V i to be the residuals from regressions of Yi , Di , and DiVi on Z ∗
i
(the

selected set of covariates from the double selection). Let ε̃i = Ỹi − δ̂1D̃i − δ̂4D̃Vi , where δ̂1 and

δ̂4 are the PDS estimators of the coefficients onDi andDiVi , respectively. LetD be thematrix with

rows (D̃i , D̃V i )
T
, and define the following projection matrix: H = D(D′D)−1D′. Let hi = hi i be the

diagonal entries of thismatrix. Then, we define Ω̂ to be a diagonalmatrix with entries ε̃2
i
/(1−hi )

2.

Then, our estimated covariance matrix of (δ̂1, δ̂4) has the following sandwich form:

V̂ =
1

N
×

N −1

N −K ∗−3
(D′D)−1

(
D′Ω̂D

)
(D′D)−1,

where K ∗ is the dimension of Z ∗
i
. Essentially, this is a heteroskedastic-consistent variance esti-

mator of MacKinnon and White (1985) applied to the residualized regression. This generalizes the

univariate versionof this estimator thatBelloni et al. (2014a) applied to each coefficient separately.

Below, we show that this estimator produces confidence intervals with good coverage under

the approximate sparsity setting that Belloni et al. (2014a) investigated. While these covariances

are important for the interaction setting, this approach would be useful anytime a researcher is

interested in a function of the parameters of interest.

4 Belloni, Chernozhukov, and Kato (2014b) propose a bootstrap method for generating uniformly valid joint confidence
regions for multiple parameters. This, however, does not help the typical use case with interactions in the social sciences,
where we are interested in confidence intervals for the marginal effects which are linear functions of the estimates.
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Table 1. Deviation coding example.

R i1 R i2 R i3

Northeast -1 -1 -1

Midwest 1 0 0

West 0 1 0

South 0 0 1

3.4 Fixed Effects and Clustering with the Lasso
One source of substantial numbers of parameters in many regression models is unit or time

fixed effects. For the base regression model, these factors can be incorporated without having to

estimate additional parameters by various demeaning operations. For fully interacted model, on

the other hand, they must be included as interactions between a binary variable representation

of the units or time periods (usually omitting a reference category) and the moderator. But this

may add a significant number of parameters to the model, and so it may be fruitful to regularize

those interactions. Unfortunately, the typical dummy variable representation of fixed effects is

poorly suited for regularization. Imagine, for instance, that we had a variable for a region of

the United States in our model, with levels {Northeast, Midwest, West, South}. In a typical

regression model, we would include dummy variables for, perhaps, Midwest, West, and South,

and the coefficients on these dummyvariableswould be comparisons of the (conditional) average

outcomes in each of these categories against the omitted category, Northeast. Thus, shrinking

coefficients toward zero in this casemeansmaking each region closer to the Northeast region. If

there are not many regions close to the omitted category, then the lasso will not take advantage

of its sparsity.

Instead of this typical reference or dummy coding of categorical variables, we recommend

deviation or sum coding. To illustrate how this coding works, we take the same census region

variable and represent it with a series of variables (R i1,R i2,R i3) that are similar to the typical

dummy variable representation of the {Midwest, West, South} regions, except that in each

variable, any observation from the omitted category, Northeast, is coded as -1. We show how

each variable codes each category in Table 1. The benefit of this coding is that the coefficients on

each of these variables has the interpretation of the difference in (conditional) means between

each region and the grand (conditional) mean of the groups. Thus, shrinkage toward zero in this

case implies shrinkage of each group toward the grand mean, a far more meaningful baseline

than an arbitrary omitted category. Andwhile this discussion focused on “main effects,” the same

reasoning applies to the types of interactions we consider in this paper.

Finally, clustering of units is a common concern in applied work, and scholars o�en rely on

cluster-robust standarderrors to ensureproper uncertainty estimates. Clustering also complicates

the PDS approach through the choice of the penalty terms. Belloni et al. (2016) show that a

small modification to the penalty will ensure the PDS will continue to be produced consistent

and asymptotically normal in this setting. In particular, suppose that we have observations in

clusters, so thatYi g is observation i in group g, withNg observations in each group, G groups, and

N =
∑G

g=1Ng total individuals. Then, we would set the penalty parameter as λy j = λy0φy j , where

φ2
y j =

1

N

G∑
g=1

©«
Ng∑
i=1

Zi g j εy i g
ª®¬
2

.

For a feasible estimate of this penalty, we can run an initial lasso to obtain estimates of ε̂y i g .

The penalty terms for the other lasso regressions follow similarly. Again, the penalty parameter
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depends on a measure of the noise in estimating the γy j , but in this case that noise allows for

arbitrary dependencewithin the clusters (Belloni et al. 2016). Thedifferencebetween this case and

theabove standardPDS is similar to thedifferencebetweencalculating the cluster-robust variance

estimator and the heteroskedasticity-robust variance estimator. Finally, we can easily extend the

above variance estimator to handle clustering by changing the formof the above estimator to that

of a cluster-robust variance estimator.

4 Simulation Evidence

The theoretical properties of the PDS estimator are asymptotic in nature which are only useful

insofar as theyprovide reasonable approximations toperformance in finite samples. Furthermore,

these asymptotic results cannot tell us how PDS will perform against other previously proposed

adaptive methods. In this section, we describe the results of a Monte Carlo analysis of this

approach and several alternative approaches to see how they perform in a variety of finite sample

settings.5 We follow a similar approach to Belloni et al. (2014a) and draw a set of covariates Xi of

dimension K, fromN (0,Σ ), where Σi j = 0.5 |i−j | , so that the covariates depend on each other. We

set the sample size to 425 and vary the number of covariates between a low-dimensional setting,

K = 20, and a relatively high-dimensional setting, K = 200. We then generate the moderator as

Ð[Vi = 1 | Xi ] = logit
−1

(
δv |0+X ′

i
δv |x

)
, with the treatment and the outcome as follows:

Di = δd |0+0.25×Vi +X ′
i δd |x +ViX

′
i δd |vx + εi d , (9)

Yi = δy |0+0.5×Di +0.25×Vi +X ′
i δy |x +1×DiVi +ViXiδy |vx + εi y . (10)

Each of the errors, {εi d ,εi y }, is independent standard normal. Given this setup, we note that

the bias of the single-interaction model, described above, will occur if δd |x , δd |vx , and δy |vx are

nonzero.

The parameters of thesemodels are generated under a quadratic decay, so that the jth entry of

δv |x is δv |x [j ] = 2/j 2. Wedefine the other coefficient vectors similarly: δd |x [j ] = 2/j 2, δy |x [j ] = 2/j 2,

δd |vx [j ] = cd |vx/j
2, and δy |vx [j ] = cy |vx/j

2. We vary cd |vx and cy |vx , so that theViXi interactions

have partial R 2 values of {0,0.25,0.5}. Note that this set is not sparse in any of the equations, but

it is approximately sparse in the sense of Belloni et al. (2014a). We focus on the partial relationship

between Di and ViXi rather than the partial relationship between DiVi and ViXi , because the

former are the relationships that can induce the type of indirect regularization bias described

above, whereas the latter will mostly affect the omitted interaction bias of the single-interaction

model. Since the omitted interaction bias is well understood, we focus on the parameter that has

the potential to most affect the performance of the various adaptive methods.

We apply severalmethods to this data-generating process, building on the simulation evidence

of Beiser-McGrath and Beiser-McGrath (2020). First, we apply both the single-interaction and fully

moderated OLS models. Second, we use the adaptive lasso with all lower order terms and the

treatment–moderator interactions unpenalized and the penalty term selected by cross validation

and the one-standard deviation rule. Third, we apply the PDS estimator described above. For PDS,

as with the adaptive lasso, we force the lower-order terms to be included in the post-selection

models, so any differences between PDS and the standard OLS approaches are due to their

estimation of the interactions. Next, we include both KRLS and BART supplying them with the

original variables only. Finally, for reference, we also estimate an infeasible “oracle”model, where

we assume δy |0, δy |x , and δy |vx are known. Since BART and KRLS are potentially nonlinear, we

5 Data and code to implement these simulations and the empirical applications below can be found in the Dataverse
replication archive (Blackwell and Olson 2021).
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estimate the interaction for these by taking the difference between the effect of Di = 1 versus

Di = 0 whenVi = 1 andVi = 0. To estimate uncertainty, we use the variance estimator described

in Section 3.3 for PDS, the conventional standard errors for KRLS, and the residual bootstrap for

the adaptive lasso (Chatterjee and Lahiri 2011). In the Supplementary Material, we also compare

PDS to a post-single-selection lasso that only uses the lasso to select variables predictive of the

outcome, and we briefly discuss those results below.

Figure 2 shows the results of these simulations. We omit the single-interaction model and the

BART from these plots, because their outlier results obscure the relative performance of the other

methods. We present the full results in Figure SM.1 in the Supplementary Material. With a low

number of covariates (K = 20), the fully moderated model dominates the feasible methods in

terms of bias, across all settings. PDS is very close in performance, with slightly higher levels of

bias, depending on the strength of the interactions. All of the other adaptive methods have large

biases except for the adaptive lasso when the covariate–moderator interactions are unrelated to

the outcome and so produce no omitted variables bias when they are omitted. KRLS has a large

degree of bias that is relatively unaffected by the parameters varied here. BART (presented in the

Supplementary Material) has similar bias to the adaptive lasso and KRLS but has significant RMSE

driven by large variance in the estimator.

In the high-dimensional setting (K = 200), the fully moderated model is very numerically

unstable, since the number of parameters (403) is close to the sample size (425), leading to RMSE

that is toohigh to showon thegraphs.6 The resultson theadaptivemethodsare remarkably similar

here to in the low-dimensional setting, with slightly higher bias and RMSE for PDS. Here, KRLS

almost always estimates a precise zero interaction, leading to near constant bias and RMSE across

the parameter values.

In Figure 3, we present the empirical coverage of nominal 95% confidence intervals from these

estimators. With a small number of covariates, both the fully moderated and PDS approaches

perform well, with PDS having coverage slightly closer to nominal levels except when the inter-

actions are strongly related to the outcome, when it slightly undercovers. The residual bootstrap

confidence intervals from the adaptive lasso undercover quite severely across a range of settings,

mostly due to the bias of the method. With a high number of covariates, the PDS approach

maintains its roughly nominal coverage, whereas the adaptive lasso shows an exaggerated pat-

tern of its performance in the low-dimensional setting. In particular, the confidence intervals

undercover even when the adaptive lasso has very little bias (that is, when R 2
y = 0). Thus, in

this quadratic decay setting, where the interactions are approximately sparse, the PDS estimator

performs well in low- and high-dimensional settings, even when fully moderated models are

infeasible. Furthermore, it appears to outperform several competing adaptive methods that have

been applied to this problem in the past.

When can the lasso approaches to this problem fail? We investigate this with an alternative

data-generating process where the covariate effects are more “dense.” In particular, we set the δ

effects defined above to be functions of j −1 instead of j −2, which spreads the same explanatory

power over a larger set of covariates. We present the RMSE of the various estimators in Figure 4,

where it is clear that the lasso-based estimators perform much worse than in the approximately

sparse setting, especially in the high-dimensional setting. It is interesting to note, however, that

PDS still outperforms the other adaptivemethods except for KRLS in the high-dimensional setting,

where its near-constant zero estimate of the interaction gives it the edge.

6 For instance, the variance estimators for the OLS are not obtainable in fully moderatedmodel withK = 200, and the RMSE
of the estimator itself is roughly 100 times the worst performance of PDS. In the Supplementary Material, we present
simulations with N = 1,000 where the fully moderated model is feasible with K = 200, and we find that PDS has lower
RMSE and better coverage than the fully moderated model.
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Figure2.Simulation results. Notes: Bias (top) and root-mean-squareerror (bottom)of variousmethodswhen
estimating interactions. Horizontal panels vary the partial R2 of the ViXi interactions on Yi , and vertical
panels vary the number of covariates. The x-axis in each panel varies the partial R2 of theViXi onDi .

Overall, adaptive approaches are very suited to this task. As we show in the Supplementary

Material, all of the adaptive methods investigated here can dramatically reduce bias over single-

interaction methods except when the covariates are completely unrelated to the outcome. Fur-

thermore, these methods can also improve efficiency (and estimability) over fully moderated

models. The PDS approach appears to outperform the other adaptive approaches considered

here in both bias and RMSE. We should note that the results for KRLS and BART are in some ways

unfair to these methods, since they both focus on estimating the entire response surface rather
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than aparticular interaction, like the lasso-basedmethods.Whilewe focusedon their off-the-shelf

implementation, a worthwhile path for future research might be to estimate separate CEFs of the

outcome within levels ofDi andVi when both are binary. In the Supplementary Material, we also
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showthat thePDSapproachalsooutperformsapost-single selectionapproachunless interactions

are unimportant for either the treatment or the outcome. Finally, the PDS approach appears to

work best when the covariate interactions are either sparse or approximately sparse.

5 Empirical Illustrations

5.1 The Direct Primary and Third-Party Voting
The role of the direct primary in shaping American electoral politics has been of persistent interest

to scholars. One argument surrounding this uniquely American institution is that, by creating a

clear path to major party nominations by those other than party insiders (Hirano and Snyder

2007), and by allowing for ideological heterogeneity within parties (Ansolabehere, Hirano, and

Snyder 2007), it reduced the electoral prominence of third parties. This argument is tested directly

by Hirano and Snyder (2007) using a two-way fixed effects models to control for state-specific

and year-specific unobserved confounders. In the South, the direct primary was a fundamentally

different reform, tied up in the disfranchisement of African Americans and the consolidation of

white Democratic one-party rule (Ware 2002, pp. 18–20). With varying motivations for primary

adoption across the North and the South, it is important to evaluate whether the effect of direct

primary adoption is similar in the two regions. Hirano and Snyder (2007) do so by estimating

separate models for the South and the non-South—in effect, a fully moderatedmodel.

We focus on U.S. House elections, and take as our outcome variable the share of all U.S.

House votes cast in a given state election for parties or individuals other than Democrats or

Republicans.7,8Wemeasuredirectprimaryadoptionasan indicator variable forwhether thedirect

primary was in widespread use in a given state and year.9 Ourmoderator, South, is an indicator for

whether a state is one of the 11 states of the former Confederacy. The single-interactionmodel can

therefore be expressed as follows:

(100−DemSharei t −RepSharei t ) = β (Primaryi t ×Southi )+γPrimaryi t +αi +τt +ǫi t , (11)

where i indexes states and t indexes election years. Thebase termonSouth is absorbedby the state

fixed effects α ; τ is a year fixed effect. In this straightforward setup, the only interactions added in

the fully moderated model are those between year fixed effects and the moderator.

Figure 5 displays estimates from a single-interactionmodel given by Equation (11), a fully mod-

erated model that adds interactions between the year fixed effects and the South indicator, our

suggested PDS estimator, and the adaptive lasso, which is Beiser-McGrath and Beiser-McGrath’s

(2020) suggested estimator. In Figure SM.9 in the Supplementary Material, we additionally report

replication results using the post-single selection, KRLS, and BART estimators discussed above

and in Beiser-McGrath and Beiser-McGrath (2020).

The estimates from the single-interaction and adaptive lasso estimates are extremely similar,

and are starkly different from the fully moderated and PDS results. While all four model types

agree that there is a small, statistically insignificant effect of direct primary adoption in northern

states, the single-interaction and adaptive lasso etimators indicate that the effect is significantly

more negative, and indeed negative overall, in the South. The fully moderated model indicates

no such interaction between region and primary adoption, with a near-zero estimate of the

interaction and a small and insignificant marginal effect of direct primary adoption in the South.

The conclusions of the PDS estimator lie in-between these extremes, with amarginally significant

7 Data on U.S. House elections are from ICPSR Study 6895, “Party Strength in the United States: 1872–1996.”
8 Note that this is not an exact replication of prior work.
9 We draw this information from Hirano and Snyder (2019, Table 2.A). If a state adopted a primary law in an odd year, we
assume primaries were in use in the following election; if it adopted such a law in an even year, we check for evidence of
primaries being held that year.
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Figure 5. Effect of the direct primary in the American North and South. Notes: Estimates from the single-
interaction, fully moderated, post-double selection (PDS), and adaptive lasso models described above. 95%
confidence intervals are based on state-clustered standard errors (single-interaction, fully moderated, PDS)
or state-blocked bootstrap (adaptive lasso).

negative marginal effect of primary adoption in the South. This replication suggests key features

of these different estimators. First, the adaptive lasso estimator here fails to select potentially

impactful interactions that condition the relationship between primary adoption and region,

leading to estimates that are extremely similar to the single-interaction model. Second, the PDS

estimator appears to hedge against possible overfitting by the fully moderated model, although

its conclusions remain largely consistent with it.

5.2 Regime Type and Remittances
The role of remittances in shaping political activity is an active area of research, with some litera-

ture suggesting that remittances can buttress authoritarian governments, and others suggesting

that remittances can spur political change in democratizing or nondemocratic countries. Entering

into this debate, Escribà-Folch, Meseguer, and Wright (2018) explore the relationship between

remittances and political protest, a first step on the path of democratization. They argue that

remittances ought to be associated with greater levels of protest, but only in nondemocracies,

and find evidence consistent with this claim.

To do so, the authors use novel (continuous)measures of remittances and protest and an array

of control variables in a linear regression model with country and time fixed effects.10 To test

the heterogeneous effects of remittances across regime type, Remit is interacted with a binary

indicator for regime type, Autocracy. This yields the following specification:

Protesti t = β (Remiti t ×Autocracyi t )+γRemiti t +φAutocracyi t +ψ
′Xi t +αi +τt +ǫi t , (12)

where Xi t is a vector of time-varying controls. In keeping with the above discussion, however, we

argue that this model makes important assumptions that can be easily relaxed. Specifically, we

note that this model assumes that all covariates—including, importantly, the fixed effects—other

than themain treatment of interest have the same (linear) effect in democracies and autocracies.

10 The authors also test their results using an instrumental variables design; we restrict our focus to their OLS specification.
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Figure 6. Remittances, protest, and regime type. Notes: Estimates from the single-interaction, fully mod-
erated, post-double selection (PDS), and adaptive lasso models described above. 95% confidence intervals
are based on regime-clustered standard errors (single-interaction, fully moderated, PDS) or regime-blocked
bootstrap (adaptive lasso).

To explore the sensitivity of inferences to modeling choices, we replicated the main specification

of Escribà-Folch et al. (2018, Table 1, column 2), using methods discussed above.

Figure 6 plots points estimates and confidence intervals from four of these approaches.11

We report these estimates for three quantities of interest: the marginal effect of remittances

in autocracies, the marginal effect of remittances in democracies, and the interaction between

remittances and autocracy. As Figure 6 makes clear, estimates differ considerably depending on

the estimator used.

All models are consistent in their conclusion that remittances are important predictors of

protest in autocracies, but only the single-interaction model supports the authors’ original con-

clusion that remittances matter differently, to a statistically significant degree, in autocracies and

democracies. For the single-interaction model, the estimated marginal effect in democracies is

almost exactly zero; the interactionbetween remittances andautocracy is positive and significant.

Among the other estimators, the adaptive lasso comes closest to affirming an interaction between

regime typeand remittances, although theestimatedoesnotapproachstatistical significance. The

fully moderated and PDS models, however, agree that there is little if any difference in the effect

of remittances across regime type. Interestingly, thesemodels disagree about the extent to which

remittances matter at all; the fully moderated model suggests they matter substantially in both

democracies and autocracies, while the PDS estimates are considerably lower for both regime

types, and only statistically significant in autocracies. As expected, the use of the PDS estimator

produces somewhat tighter confidence intervals than the fully moderatedmodel.

6 Conclusion

In this paper,we reviewhowmodelmisspecification canaffect the estimationof interactive effects

in regression models. A single multiplicative interaction term can be biased when interactions

between the same moderator and other covariates are omitted from the model (Beiser-McGrath

and Beiser-McGrath 2020). These omitted interactions can considerably change the estimated

11 Once again, we report estimates from the post-single selection, KRLS, andBART estimators in the SupplementaryMaterial,
in Figure SM.10.
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effect heterogeneity and lead scholars to draw misleading conclusions. To avoid this issue, we

advocate for two possible solutions. The first is a fully moderated (or split-sample) model that

includes an interaction between the moderator and all variables in the model. When this a

fully moderated model is not possible due to sample size, we recommend a machine learning

approach, but as we describe above, it is important to choose one that avoids the types of

regularization bias common in those techniques. In particular, we proposed one solution, PDS,

that utilizes the lasso for model selection, but not estimation, and applies it both the outcome

and the main independent variable of interest.

Based on our analyses, we recommend that scholars think carefully about model misspecifi-

cation when estimating interactions, andwhen possible, usemore flexible estimation procedures

for this purpose. This includes assessing linearity of the interaction, as Hainmueller et al. (2019)

emphasize, but also to consider how lower-order terms of the moderator and covariates, among

other nuisances, affect inferences. In this paper, we have focused on the lasso, but other machine

learning methods may also provide flexible ways of estimating interactions. When using other

machine learning methods, though, it is important to assess how they perform in terms of

estimating low-dimensional parameters, since many of these methods are designed for general

prediction tasks and not the traditional inference of the applied social sciences.
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