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Abstract

In this paper, I introduce a Bayesian model for detecting changepoints in a time-series of contri-
butions to candidates over the course of a campaign. is game-changers model is ideal for cam-
paign contributions data because it allows for overdispersion, a key feature of contributions data.
Furthermore, while many extant changepoint models force researchers to choose the number of
changepoint ex ante, the game-changers model incorporates a Dirichlet process prior in order to
estimate the number of changepoints along with their location. I demonstrate the usefulness of
the model in data from the  Republican primary and the  U.S. Senate elections.

§ I

Electoral campaigns are the central events in the political life of democracies. And, increasingly,

campaigns are as much about garneringmoney as they are about garnering votes. Indeed, candidates

view fundraising as a vital and time-consuming part of what they do. For citizens, campaign con-

tributions represent a costly form of political participation. is participation certainly depends on

features of the individual (Verba, Schlozman, and Brady ), but it also ebbs and Ęows throughout

the election season in response to news coverage, campaign events, and changes in candidate strat-

egy (Mutz ). While there is some evidence in political science that momentum matters (Bartels

), there have been few studies that attempt to statistically pinpoint when campaigns take off or
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fall Ęat. is paper seeks to do just that: ĕnd points in time when contributions to a candidate change

dramatically.

To estimate these shis, I propose a novel Bayesian changepoint model, called the game-changers

model, tailored to handle campaign contributiondata. enumber of contributors to a campaign on a

given day is highly overdispersed due to the clustered processing of contributions and the intermittent

nature of political attention. Extant changepointmodels for count data, such as those used in political

science (Park ; Spirling ), use the Poisson distribution, which is problematic here because

it places inappropriate restrictions on the variance of the data. As shown below, this can lead to

incorrect inferences on the location of changepoints. e game-changers model uses random effects

to handle overdispersion, an approach that is equivalent to assuming a negative binomial likelihood,

which is common in political science (King ).

Most changepoint models require researchers to specify the number of changepoints in advance,

but it is hardly clear what the “correct” number of game-changers is for any given campaign, let alone

a series of campaigns. To alleviate this problem, the game-changers model takes a Bayesian nonpara-

metric approach and estimates the number of changepoints along with their location. is approach

is an extension of the Chib () method for estimating changepoints and incorporates a Dirichlet

process prior for the clustering of the contributions into regimes. is provides a computationally

efficient and conceptually straightforward method for allowing the model to include the number of

regimes and, thus, the number of changepoints. While this model is tailored to estimating change-

points for campaign contributions, it can be applied to any time series of overdispersed counts, of

which there are many. More generally, the Dirichlet process prior approach to estimating the num-

ber of changepoints generalizes beyond this model or even count data.

e paper proceeds as follows. Section  describes the campaign contributions data and the var-

ious factors that lead to overdispersion. Section  describes the game-changers model and the com-

putational approach to ĕtting the model. Section  describes four vignettes that show how the model

works in simulated and real data. Section  concludes.
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Figure : Daily number of individual contributions to Barack Obama in . Black dots are weekdays and red
dots are weekends. Vertical lines are the ĕling deadlines.

§ T    

e Federal Election Commission (FEC) collects data on contributions of  or more to cam-

paigns for federal office made by individuals and groups. e FEC requires campaigns to report a

fair amount of information, including the date that the campaign received the contribution (Federal

Election Commission ). ese reports allow us to track both the daily number of contributions

made to a campaign along with the amount contributed.

Campaign contributions have a few unique features thatmake it difficult to apply commonly-used

changepoint models. For non-electronic contributions, the date the campaign reports “receiving” a

contribution might differ from the date that the date that the donor made the contribution. ere

are many reasons for this, but two stand out. First, if contributions travel by mail, they might take

some time to reach the campaign. Second, and more important for this study, is the potential for

delays in campaign processing of contributions. Campaign staff are limited in the amount of time

they can process incoming contributions–even if a contribution arrives on a given day, it might not
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be processed until later. One indication of this is given in Figure , which shows the number of

contributions received by BarackObama in , with weekends plotted in red. Campaigns aremuch

more likely to receive contributions on aweekday compared to theweekend. is pattern results from

the fact that campaign staff largely work a traditional work week and so contributions that arrive

during the weekend are processed aer staffers return to work on Monday.

Candidates also have strategic reasons for processing contributions at different rates, one due to

signaling and one due to contribution limits (Christenson and Smidt ). First, the FEC requires

that candidates report their contributions to the FEC at various points throughout the campaign.

ese reports are important as they publicly disclose the candidate’s ability to raise funds. Candidates

want to signal that they are a high-quality candidate and one way to do this is to have a large num-

ber of contributors. us, campaign staff work to process any incoming contributions before these

ĕling deadlines so as to maximize the reported contributions. Figure  shows the ĕling deadlines for

 as vertical lines. Clearly, there is a marked increase in the number of contributions received

around the ĕling deadlines. A second reason for pre-deadline increases is that there are different

contribution limits for before and aer the primary election. A candidate would want to process any

pre-primary contributions before the relevant ĕling deadline so that those pre-primary donors can

legally contribute to the campaign again during the run up to the general election. Filing deadlines

and weekends are two features campaign contributions data that contribute to the overdispersion of

their distribution.

e above reasons for overdispersion could be measured and accounted for in a Poisson regres-

sion model, which would alleviate some of the problem. ere are other features of campaign con-

tributions that can lead to overdispersion as well, some of which are hard to measure. For instance,

campaigns receive many contributions as part of campaign fundraising events—dinners, speaking

engagements, and so on. ese events add to the clustering of the contributions because they group

contributors together in time. ese events are more problematic than weekends and ĕling deadlines

because it is very difficult to collect data on the timing of campaign fundraisers. us, it is impor-
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tant that we build a model that can handle these unmeasured forms of overdispersion inherent in

contributions data.

§ A      

. Changepoint models

Changepoint models estimate discrete changes in the distribution of time-series data. Given a time-

series of observed contribution counts, Y = (y, . . . , yT), a changepoint model assumes that the

distribution of yt is distributed according to a parameter γt, which takes on at most M +  distinct

values, depending on t, where M is the number of changepoints. us, M +  is the number of

distinct parameter regimes in the data. Let c = (c, . . . , cM) be the vector of changepoints and θ =

(θ, . . . , θM+) be the vector of parameters associated with each regime. With these, we can deĕne the

parameters at each point in time as

γt = θm i.f.f. cm− < t ≤ cm, ()

where we deĕne c =  and cM+ = T. us, each observation takes on the parameters of its regime.

One way to conceptualize this model is to imagine the time-series as residing in one regime for a

given amount of time before jumping to another regime at a changepoint. Chib () shows that we

can think of this regime-switching structure as a discrete-time, discrete-state Markov process with a

constrained transition matrix. Let S = (s, . . . , sT) be a vector of regime indicator, so that if st = m,

then at time t the time-series is in regimem and that cm− < t ≤ cm. Given the nature of themodel, we

only have to specify the probability of transitioning to the next regime: Pr(st+ = j+|st = j) = pj,j+.

We can model S in place of the changepoints since the kth changepoint happens at ck if and only if

sck = k and sck+ = k + . e regime indicators are useful in Bayesian changepoint models, where

we can augment a model with these latent variables to ease computation (Chib and Greenberg ).
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is model of Chib () forces the time-series to reside in each of the M +  regimes without

skipping a regime or returning to a regime. Note though, that if we are interested in estimating the

changepoints, c, then recurrent regimes are straightforward since the model will recover the relevant

changepoints and treat these recurrence as distinct regimes. More troubling is the lack of regime

skipping, which means that each of theM +  regimes is visited. is can be problematic if the true

number of structural breaks is less than the number of changepoints in themodel. I address this issue

below.

. Tailoring changepoints for campaign contributions data

Up to this point, I have le the distribution of yt unspeciĕed since changepointmodels can accommo-

date many different data-generating processes, including continuous, binary, and count outcomes.

See Park (, ) and Spirling () for different applications of changepoint models in po-

litical science. Unfortunately, the extant changepoint models are poorly suited to handle campaign

contributions data due to the features discussed above.

eoverdispersion inherent in campaign contributions data requires a deviation from the Poisson

changepoint models of Chib (), Park (), and Spirling (). ese models assume that

yt|λt, st = k ∼ Po(λt), λt = exp(Xtβk), ()

where β = (β, . . . , βM+) are the Poisson regression coefficients from each regime. Given the nature

of the Poisson distribution, these models implicitly assume that the mean in any speciĕc regime is

equal to the variance. is assumption is unlikely to hold in general and fails miserably in campaign

contributions data (see Section . for a demonstration of this).

As shown by Frühwirth-Schnatter et al. () in the context of mixturemodeling, we can handle
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overdispersion in a count model by augmenting model  with a random intercept:

yt|λt, ηt, st = k ∼ Po(ηtλt), λt = exp(Xtβk). ()

e random effects, η = (η, . . . , ηT), allow for the marginal distribution of the data (that is, p(yt|λt))

to have a separate mean and variance. In fact, if we place a Gamma prior on the random intercept,

ηt|st = k, ρk ∼ Ga(ρk, ρk), ()

then the marginal distribution of the data is negative binomial. Note that the prior in () allows

for different amounts of overdispersion in different regimes. As ρk tends toward inĕnity, the model

converges to a Poisson model. For a given ĕnite value of ρk, the marginal distribution of the data has

the following form:

p(yt|λt, ρk, st = k) =
(
ρk + yt − 
ρk − 

)(
ρk

ρk + λt

)ρk ( λt
ρk + λt

)yt

, ()

which is a negative binomial with trial size ρk and probability of success ρk/(ρk + λt). Negative

binomial models are common in political science for handling count data with overdispersion (King

).

. Estimating the number of changepoints

In order to estimate the location of the changepoints, most existing changepoint models require we

know the number of changepoints that exist in the data. Obviously, for almost any campaign, it would

extraordinarily difficult for researchers to know, with certainty, the number of changepoints in the

data. For most researchers, in fact, estimating the number of changepoints might be as interesting as

estimating their location. A common approach in changepoint models is to estimate many models,
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each conditional on a number of changepoints, then use a model selection tool to choose the “best”

model (Park ; Chib ).

Changepointmodels, though, are a special type of ĕnite-mixturemodel and these types ofmodels

fail to meet the regularity conditions of the traditional, likelihood-based non-nested model compar-

ison tests. erefore, a common way to compare models is to use Bayesian model selection via the

calculation of the marginal likelihood of the model. Park () provides an example of how this

approach works for binary and ordinal-probit changepoint models. Chib () provides a straight-

forward approach to calculating marginal likelihoods when using MCMC based on the Gibbs sam-

pler. is approach is not applicable with the above negative binomial model, however, because it

requires a Metropolis-Hastings step to draw the ρk. Alternative approaches to Bayesian model com-

parison are computationally difficult and pose problems with highly unlikely models (Park , p.

). Koop and Potter () identify another major problem with ĕxed in-sample changepoint ap-

proaches: common Bayesian priors, such as those used in Chib (), lead to undesirable behavior

at the end of the sample.

An alternative to model selection is to estimate the number of changepoints as part of the model

itself. A number of methods have been proposed to leave the number of changepoints unrestricted,

but many of these approaches are based on a conditionally linear model and not appropriate for the

above non-linear model. Instead, this paper preserves the simplicity and computational efficiency

of the method proposed by Chib () but allows it to choose the number of changepoints as part

of the model.

e approach of Chib () assumes that there areM+  regimes and that each of these regimes

is visited by the time-series. e model imposes this restriction by assuming that s =  and that

sT = M + . is paper instead places no restriction on the value sT, so that the model can estimate

. Giordani and Kohn () provide a method of estimating the number of changepoints that work for conditionally
linear, Gaussianmodels. Geweke and Jiang () andChong andKo () provide alternativeMCMC implementations
of process priors in changepoint models. Koop and Potter () amends Chib’s method to allow for the estimation of
the number of regimes, but this approach requires many more calculations than the present approach.
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fewer than M +  regimes in the observed sample. is shis M from being the assumed number

of changepoints to the maximum number of changepoints allowed by the model. is approach will

recover the posterior distribution on the number of changepoints, as long as we set M high enough

not to truncate the posterior. Note that we can only observe T possible regimes in the data—one for

each observation.

We can represent this approach as using a speciĕc version of the Dirichlet process prior, a popular

tool in Bayesian nonparametrics (Neal ). e Dirichlet process prior creates an inĕnitemixture

model as opposed to the ĕnite mixture models that are typically used by changepoint models. In

general, models with Dirichlet process priors group observations together into a countably inĕnite

set of groups (Ferguson ; Escobar and West ). We can show the central intuition of the

Dirichlet process prior as by taking the limit of ĕnite mixture models. Suppose we have a mixture

model with the same models as above and K components:

yt|st, β, ρ, ηt ∼ Po(ηt exp(Xtβst)) ()

st|p ∼ Discrete(p, . . . , pK) ()

(βk, ρk) ∼ G ()

p ∼ Dirichlet(b/K, . . . , b/K). ()

Here,G is the “base” distribution of the regime parameters. Neal () shows that we canmarginal-

ize over the distribution of p and, as K → ∞, we ĕnd that:

p(st = k|s, . . . , st−) →
nt,k

t− + b
()

p(st ̸= sj for all j < t|s, . . . , st−) →
b

t− + b
()

Here nt,k is the number of observations up to time t are in component k. us, each observation

. For other uses of Dirichlet process priors in political science, see Grimmer () and Spirling and Quinn ().
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is allocated to a component with a probability that is proportional to the number of previous units

already allocated to that component. is property of the Dirichlet process prior is called the “rich

get richer” property and is a fundamental assumption of the prior. Different Bayesian nonparametric

priors have different assumptions embedded into their design and these different assumptions can

lead to different clusterings. With this prior in hand,Neal () provides a host ofMCMCalgorithms

to estimate the posterior distribution of both the clusters and the cluster parameters.

A changepoint model is a special case of a clustering, where we refer to the clusters as regimes and

restrict how the observations move from regime to regime. Namely, we stipulate that an observation

at time t must either be in the same regime as observation t −  or it can form a new regime. Ob-

servations cannot “return” to a previous regime. us, the mixing probabilities p do not follow the

symmetricDirichlet distribution of (). For st+, all pk are with the exception of pst and pst+ = −pst .

ese are the probability of remaining in the same regime as t and the probability of moving to a new

regime. Since there are only two possibilities, our prior over these values becomes a Beta distribution

with parameters a and b. is setup implies a Dirichlet process prior with the following transition

probabilities as K → ∞:

p(st = k|st− = k, s, . . . , st−) →
nt,k + a

nt,k + a+ b
()

p(st = k+ |st− = k, s, . . . , st−) →
b

nt,k + a+ b
. ()

Note that these transition probabilities are no longer Markovian, as they are in the original Chib

(). is only requires a modest adjustment to the algorithm to draw the st.

In practice, there is no need to draw parameters for an inĕnite number of regimes. Instead of

sampling from the inĕnite mixture model, I take an alternative approach that uses a truncated ap-

proximating distribution with a ĕnite, but large, number of regimes (Ishwaran and James ).is

will not limit the number of regimes estimated by the model, so long as the upper bound on the

number of regimes is large enough to never truncate the distribution in practice. In the empirical ex-
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amples below, I use an upper bound of  changepoints and there is nevermore than  changepoints

estimated in any iteration of the MCMC algorithm.

. Priors and hyperparameters

e complete model requires proper priors on all parameters and I use the following:

ρk ∝ ρe−
k (ρk + d)e+f; ()

βk ∼ N (,B); ()

pk,k+ ∼ Beta(a, b). ()

e prior for each regime parameters are a priori independent. In order for the posterior to exist, the

priors must be proper, which means that e >  for the prior on ρk. For all of the models below, I use

e = f =  and d = , which follows Frühwirth-Schnatter et al. (), and B = .

e priors on pk,k+ imply a prior on the length of each regime and, therefore, a prior on the

number of regimes that are visited in the sample. Namely, pk,k+ is the probability of a one-period

regime, which we can build up to infer an expected a priori regime length. In the applications below,

I use a =  and b = ., which implies an expected regime length of  days and around .

regimes observed in a typical election season. ese priors are intentionally designed to allow for

long regimes and potentially no changepoints at the expense of ĕnding shorter regimes. When we

assume shorter regimes a priori, we end up identifying clusters of one- or two-day outliers in addition

to the more clearly “game-changing” changepoints. In any case, the estimated changepoints do not

vary too much as we change the value of the hyperparameters a and b.

. AMarkov chain Monte Carlo estimation strategy

Given the above model, we can write the posterior as follows:
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p(s, β, ρ, η|y,X) ∝ p(y|β, η,Xt)p(η|ρ)×
T∏

t=

[
M+∑
m=

p(yt|βm, ηt,Xt)p(ηt|ρm)p(st = m|βm, ρm)

]
×

M+∏
i=

p(βm|B)p(ρm|d, e, f)p(pi,i+|a, b) ()

To sample from this, I take a Markov chain Monte Carlo approach using Gibbs sampler which

samples from the full conditional posterior of each parameter. Below, I discuss the non-standard

steps in detail.

.. Drawing the latent regimes

To draw the latent states, I use a modiĕed version of the Chib () algorithm. Chib points out that

we can write the full conditional posterior of s as

p(sT|y,Θ, P)× p(sT−|y, sT,Θ, P)× · · · × p(st|y, st+:T,Θ, P)× · · · × p(s|y, s,Θ, P), ()

whereΘ = (β, ρ, η) is the collection of themodel parameters, P = (p,, . . . , pM,M+) is the collection

of transition probabilities, and st+:T = (st+, . . . , sT). Crucially, note that Chib () drops the term

for sT because Chib assumes the last observation is in the last regime,M+ , with probability one. In

this speciĕcation, we allow sT to take any value between  andM + , with a probability determined

by the data. With this in hand, we can derive each of these distribution and then sample from each,

in turn:

• sT from p(sT|y,Θ, P),

• sT− from p(sT−|y, sT,Θ, P),

•
...
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• s from p(s|y, s:T,Θ, P).

e regime of the ĕrst period is always s = . us, to sample from this, it is sufficient to sample

from p(st|y, st+:T,Θ, P), which is given by Chib ().

.. Drawing the model parameters

Now that we have draws of the latent states, we need to take draws of the model parameters in

each regime (βk, ρk). e non-linear nature of the distributions involved eliminate the possibility

of closed-form posterior distributions. is makes the straightforward application of Gibbs sam-

pling impossible. To avoid the inefficiencies of other MCMC approaches, I draw on the auxiliary

mixture sampling approach of Frühwirth-Schnatter et al. (). is approach augments the data

with a set of latent variables τt and τt which contain all the distributional information about the

outcome y and whose distribution can be approximated by a mixture of Normals. With draws of

τt = (τt, τt) and mixture component indicators rt = (rt, rt), we can turn this non-linear problem

into a linear Gaussian regression problem. at is, conditional on τt, rt, and ηt, posterior inference

on the βk is simply a Bayesian linear regression. Frühwirth-Schnatter et al. () also shows how to

include draws for the negative binomial parameters ρk and ηt in a Gibbs sampler.

.. MCMC algorithm

us, I proceed to draw from the posterior using the following Gibbs sampling approach:

. Draw s|y,Θ, P as in Section ...

. Draw (ρ, η)|y, β, s:

(a) Draw ρk|y, β unconditional on η using a Metropolis-Hastings step.

(b) Draw ηt|y, β, ρ, s ∼ Gamma
(
ρst + yt, ρst + exp(Xtβst)

)
, for t = , . . . ,T.

. Sample τ, r|y, β, η, ρ using the auxiliary mixture approach Frühwirth-Schnatter et al. ().

. Draw from β|τ, r, η using the auxiliary mixture approach of Frühwirth-Schnatter et al. ().
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. Draw pii|s, a, b from Beta(a+ nii, b+ ), for i = , . . . ,M+ .

§ V

. A simulation study

To demonstrate the effectiveness of the gamechangers model, I apply it to a simulated dataset, seen

in the bottom panel of Figure . is dataset has T =  observations with four regimes with 

observations each. I simulated the data in each regime with a simple intercept, so that β = (, , , )

and with overdispersion parameters ρ = (., ., , .). I ran the above MCMC sampler with an

upper bound of  changepoints for , iterations, thinned by , with a burin period of ,

iterations.

e nonparametric nature of the sampler makes visualizing the posterior more complicated than

in more traditional approaches to changepoint problems. Namely, since the number of regimes can

change from iteration to iteration, it makes little sense to look at the probability of a given observation

residing in a speciĕc regime—the nature of the regimes themselves are changing. An alternative

approach is to simply calculate the posterior changepoint probability, which is simply

ĉt =

G

G∑
g=

M∑
j=

I(̂s(g)t = j+ , ŝ(g)t− = j), ()

where I() is an indicator function and s(g)t is the gth draw of the regime for observation t. We can

calculate this straightforwardly from the MCMC output by ĕnding the proportion of draw where a

change occurs at t. e top panel of Figure  shows these values for the simulated data. It is clear that

there is a high posterior probability of the changepoints occurring around their true values of t = ,

t = , and t = .

Making inferences about the regime parameters is also difficult due to the changing number of
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regimes. Regime  in one draw could be very different from regime  in another draw. Instead of

investigating the posterior mean of the regime parameters, we can estimate the posterior mean of the

observation. at is, we can estimate

λ̂t =

G

G∑
g=

exp(Xtβ̂
(g)
s(g)t
), ()

whereG is the number ofMCMCdraws, β̂
(g)
k is the draw of βk in iteration g of the sampler. e bottom

panel of Firgure  overlays the true values of λt in green along with its posterior mean, λ̂t in red. In

this case, the posterior values largely matched up the truth, with some (small) shrinkage toward the

prior.

Extant changepoint models in political science also rely on the Poisson distribution, but do not

take into account overdispersion. To demonstrate this, I applied the Poisson changepoint model

of Park () to the same set of simulated data. For this model, we must specify the number of

changepoints, so to give an advantage, I correctly specify the number of changepoints. Even with this

advantage, the Poisson model is unable to recover the true locations of the changepoints. e top

panel of Figure  shows that none of the estimated changepoints come close to the true changepoints.

e bottom panel of the same ĕgure shows why the Poisson model fails to ĕnd these changepoints.

is panel plots a posterior predictive check (Gelman et al. ) for overdispersion, which themodel

clearly fails. is plot shows a histogram of the standard deviations of data predicted by the posterior

distribution of the parameters, along with the actual standard deviation of the data in red. Obviously

the true standard deviation is considerably higher than what is predicted by the model. is is a

clear indication that Poisson changepoint models have difficulty in situations where count data is

overdispersed, such as with campaign contributions data.
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Estimated changepoint Pr(Change) Direction Campaign Event
May ,  . + Fox News debate (May )

May –,  . + Announces candidacy (May )
September –,  . + Wins Florida  Straw Poll (Sept. )

November ,  . − Sexual misconduct allegations (Nov )
December ,  . − Suspends campaign (Dec. )

Table : Estimated Herman Cain changepoints and their substantive explanations.

. e rise and fall of Herman Cain

Herman Cain’s campaign for the  Republican Presidential nomination provides an excellent

demonstration of the validity of the above model. Cain was one of many candidates vying for the

nomination and one of a few to reach the status of frontrunner, then quickly losing that status due

in part to allegations of sexual misconduct. e ups and downs of Cain’s campaign provide a good

target for the changepoint model.

To estimate this model, I use the above MCMC sampler with , iterations, thinned by ,

with a burn-in period of , iterations. Figure  presents the posterior probability of a changepoint

in the top panel. In the bottom panel, I plot the raw number of contributors along with the posterior

mean of λt, the mean of the negative binomial distribution for each observation in red. e vertical

red lines correspond to dates that have greater than . posterior probability of being a changepoint.

Table  lists each of these estimated changepoints and its corresponding campaign event in the cam-

paign.

Although Cain officially announced his candidacy on May , , he did participate in cam-

paign activities before that time, including a Fox News debate on May th, where at least one Fox

News focus group voted him the “winner.” e model predicts a changepoint the day aer this de-

bate along with a short regime of high activity aer he officially announces his candidacy. emodel

then estimates a long summer regime of June until late September when the model ĕnds a series of

changepoints following Cain’s winning of the Florida  Straw Poll (Sutton and Holland ). is
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regime of increased contributions lasts a little over a month until November th, a little over a week

aer the ĕrst reports of Cain’s sexual misconduct on October th (Martin et al. ) and a few days

aer the ĕrst women to go public with accusations against Cain onNovember th (Henderson ).

is decidedly lower regime is ended by an estimated changepoint on the day that Cain suspends his

campaign for the nomination.

e model correctly identify major shis in the distribution of contributions to Herman Cain

which correspond to actual prominent events in his campaign. It is important to note that the model

makes no restrictions on the number of changepoints in the data. is is crucial in this example, be-

cause it is difficult to specify the number of changepoints a priori, even if one were to visually inspect

the time series. Furthermore, a Poisson changepoint model using the estimated number of change-

points (seven) from this output, fails to recover substantively important breaks. For example, the

Poisson model fails to ĕnd a changepoint aer the allegations of sexual harassment in early Novem-

ber. If we used this approach to help investigate the relationship between scandal and contributions,

the Poisson model would lead us badly astray. e game-changers model ignores small blips in the

data due to overdispersion and captures meaningful changes to the distribution of contributions.

. e senatorial surges

We can fruitfully apply this changepoint model to campaigns other than those at the national level.

Furthermore, investigating local campaigns can give us insight into the relationship between local

and national politics. To demonstrate this, I applied the gamechangers model to the fundraising

for major-party nominees for Senate in the - election cycle. One approach to modeling

multiple candidates at the same time would be to build a hierarchical version of the gamechangers

model and run this larger model on all the candidates at the same time. is approach is slightly

problematic for a changepoint problem. Namely, there is no reason, a priori, to think that the regimes

. Due to small sample sizes, I dropped any candidate that had fewer than  contributors or fewer than  days of
positive contributions. is le  out of a possible  candidates in  races. Note that there were two states, Mississippi
and Wyoming, who had two Senate elections in  due to special elections to replace vacated seats.
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of one campaign are necessarily the same fundamental type as regimes from another campaign. at

is, it makes no sense to use the parameters from regime  in one race to help estimate the parameters

in regime  in another race, since (a) regime  might be  day in one race and  days in the other

or (b) regime  might not even occur in one of the races. To avoid this, we would have to either

ĕx the number of changepoint across campaigns or implement a fairly complicated prior structure.

Instead, I take the conceptually simpler approach and run the gamechangers model separately on

each campaign. As in Section ., I draw , MCMC iterations, thinned by , aer an initial

burn-in period of , draws.

e results from these models are presented in Figure , with the dates of Democratic change-

points in blue and Republican changepoints in red. In addition, the ĕgure indicate the direction of

the changepoint depending on the sign of λ̂t − λ̂t−, where t is the changepoint and λ̂t is the mean of

the posterior mean of the negative binomial at time t. e broad strokes of these results present an

interesting picture. ere is a Ęurry of activity early in the election cycle, then a relative calm in late

, then a steady pace in . It is interesting to note that incumbent candidates dominate the
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“early money” gamechangers:  of the  changepoints in  are for incumbent candidates (the

changepoints in  are almost exactly evenly divided between incumbents and non-incumbents).

In addition to locating the changepoints for each race, the game-changers model allows us to

identify candidates who have certain type of changepoints. For instance, we may be interested in

“surging” candidates: those whose fundraising takes off toward the end of the race. It is useful to

identify these candidates, because they may give us insight as to how elites choose to contribute in

close races.

State Candidate Changepoint  vote CQ (Spring) CQ (Fall)
AK Begich (D) Sep. ,  . Lean R Leans D
CO Udall (D) Sep. ,  . Tossup Leans D
MN Franken (D) Sep. ,  . Tossup Tossup
NC Hagan (D) Sep. ,  . Likely R Tossup
NH Shaheen (D) Sep. ,  . Tossup Likely D
OR Merkley (D) Sep. ,  . Lean R Tossup

Table : Senate candidates who surged in , as determined by the changepoint model. e “ vote” column
is the their share of the two-party vote on election day. eCQ scores are the predictionsmade byCongressional
Quarterly about the race in the Spring and the Fall.

To identify the surgers, I ĕnd all the campaign that had changepoints from September st, 

onward and that reached theirmaximumaverage contributions in the twomonths before election day.

Table  shows the campaigns thatmeet this criteria in , alongwith predictions fromCongressional

Quarterly and the ĕnal election outcome. Of these, ĕve candidates are Democrats facing Republican

incumbents, with only Rep. Mark Udall (CO) running for an open seat. All of the surging candidates

had Spring predictions were either tossups or favoring the Republican. By October, the CQ rating

had either remained the same or now favored the Democrat in each of the races. Furthermore, each

of these candidates ended up wining their race, albeit sometimes by small margins.

Interestingly, all of these candidates were identiĕed by various Democratic fundraising groups as

being targets for overturning Republican-held seats. During the month of September, former Vice-

President Al Gore sent emails to members of the liberal group MoveOn.org to encourage them to
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donate to the campaigns of Hagan, Franken, and Udall (Davis ). Early in September, a group of

prominent Hollywood women organized a group called “Voices for a Senate Majority” which sought

to raise at least , for each of these candidates (Ressner ). e ability of candidates to

raise funds is oen thought of as critical and investigating why and how certain candidates are able

to surge in such contribution toward the end of the race could bring valuable insights into the causes

and consequences of campaign contributions more broadly. e game-changers models allows this

kind of study by identifying these surging campaigns. emeasurement of these surges would be key

to a study of how external actors (like MoveOn) can inĘuence a candidate’s rise during the election

season.

. Game-changers and news coverage

Now that we have estimated changepoints for each Senate candidates for , we may wish to un-

derstand what relationship these game-changers have with other aspects of the campaign. One way

in which periods with changepoints differ from periods without changepoints is in the how the press

covers the them. To demonstrate this, I collected data on the amount of coverage dedicated to each

Senate race in eachweek using a political trade publication calledeBulletin’s Frontrunner. is daily

publications provides summaries of the national and local news coverage of each race. To measure

the amount of coverage, I count the number of words in these summaries aggregated up the weekly

level. is measure varies from zero words in some weeks to up to roughly , words toward the

end of the campaign.

To get a sense for how game-changers relate to news coverage, I ran a logistic regression of the

presence of a changepoint in a given race in a given week on the number of words written about that

race in the Frontrunner. In addition, I included a linear time trend, the number of ads run by the

candidates or the parties in that week, the Democratic percent of two-party poll results in that week,

and, in some speciĕcations, a race ĕxed-effect. Figure  shows how the probability of a changepoint
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changes with the Frontrunner word count. In weeks with more news coverage, there is a greater

chance of a changepoint andmoving from words to  words roughly double those chances. is

result seems to indicate that the dynamics of contributionsmight dependheavily on the attention paid

to a campaign.

§ C

Some campaigns take off and some campaigns fall Ęat. is paper presents a novel statistical model

that estimates the number and timing of these changepoints in campaign contributions data. is

model gives researchers the ability to detect signiĕcant events in campaigns and investigate the nature

of these shis in the broader political context. is represents the ĕrst attempt to measure a fairly

tricky, yet common phenomenon: a campaign game-changer. With the game-changers model in

hand, we can estimate changepoints for a whole host of campaigns and for a whole host contribution

types—individuals versus s, men versus women, or in-state versus out-of-state. Further exploring

the variation in structural breaks will help us better understand the nature of contributions as political

participation.

Methodologically, the game-changer model pushes changepoint models forward by bringing to-

gether a few novel features. First, it naturally incorporates the overdispersion that is common in

count data. Second, it leans on Bayesian nonparametrics in order to estimate the number of change-

point instead of having to know it a priori. is second contribution is especially important when, as

in this case, marginal likelihoods are difficult to compute. One obvious way to extend this model is

to build a multivariate version of the game-changers model. is model would estimate the change-

points for multiple time-series at the same time, allowing for in-model comparisons and complicated

dependence structures. A potentially useful approach might be to combine the present model with

the dynamic overdispersion model of Brandt and Sandler ().

. is was generated by the simulation-based marginal effects method of King, Tomz, and Wittenberg (), using
Zelig (Imai, King, and Lau ).
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I have tailored themodel to campaign contributions data, but the applications of this model reach

far beyond campaigns. In international relations, the number of violent attacks or deaths in a conĘict

are likely to feature overdispersion due to geographic and strategic clustering. e present model

could overcome this issue and help scholars identify conĘict regimes during the course of a conĘict.

In many areas of the social sciences, scholars engage in event studies to identify the patterns that

underlie how certain events arise. Scholars facing overdispersion in their event study could fruitfully

apply this model to their speciĕc problem.

e Dirichlet process prior approach that I take in this paper is more general than this spe-

ciĕc negative binomial outcome model. Because it generalizes the Chib () method for multiple

changepoints, it also inherits the broad applicability of that method. Since the model parameters Θ

are drawn conditional on the latent states and the Dirichlet process prior only affects the drawing

of the latent state, it is straightforward to adapt this approach to changepoint model for continuous,

binary, and ordered categorical variables such as those in Park () or Spirling ().
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