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Abstract
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observeables assumptions for the mediator. In this paper, we show how to identify and estimate
controlled direct effects under a difference-in-differences design where we have measurements
of the outcome and mediator before and after treatment assignment. This design allows us to
weaken the identification assumptions to allow for linear, time-constant unmeasured confound-
ing between the mediator and the outcome. Furthermore, we develop a semiparametrically effi-
cient and multiply robust estimator for these quantities and apply our approach to a recent ex-
periment evaluating the effectiveness of short conversations at reducing intergroup prejudice. An
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learning algorithms to avoid bias from misspecification.
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1 Introduction

The estimation of causal effects is a cornerstone of the empirical social sciences, but scholars have

long wanted to move beyond the question of if an effect exists and ask how an effect works. To

this end, researchers often attempt to estimate the direct effect of a treatment net some potentially

mediating variable, which can provide evidence on what role the mediator plays in the mechanism of

the causal effect. While there are several types of direct effects, the controlled direct effect has become

a popular quantity of interest since it can be identified under weaker assumptions than a traditional

mediation analysis (Acharya, Blackwell and Sen, 2016), and it has been applied in a wide variety of

questions in political science. For example, can perspective-taking interventions designed to reduce

prejudice toward disadvantaged groups affect policies net any effect on subjects’ feelings about those

groups (Adida, Lo and Platas, 2018)? What is the effect of historical ethnic diversity on contemporary

economic outcomes not due to public goods provision (Charnysh, 2019)? How does exposure to

ethnic violence affect political preferences not through demographic changes (Hadzic, Carlson and

Tavits, 2020)? Controlled direct effects in these studies answer a substantively meaningful question

about complex causal scenarios: how would an intervention affect an outcome if we held a potential

mediator fixed for all units?

Unfortunately, methods for estimating these controlled direct effects have required strong as-

sumptions of “no unmeasured confounders” for the mediator-outcome relationship which are often

implausible in political science data. For example, there are likely unmeasured factors such as broad

cultural beliefs that influence both subjective feelings about disadvantaged groups and views on poli-

cies about those groups, even conditional on covariates. Thus, even in an experimental setting when

treatment is randomized, estimating direct effects can raise the specter of confounding (Montgomery,

Nyhan and Torres, 2018). The goal of this paper is to show how to identify and estimate controlled

direct effects under weaker assumptions with experiments that feature a multi-wave panel design.

These designs measure covariates and outcomes in multiple waves, with at least one wave occurring

before treatment is administered, allowing significant reductions in an experiment’s implementation

costs (Broockman, Kalla and Sekhon, 2017). We show that these designs have the additional benefit of
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allowing the identification of controlled direct effects of treatment fixing the value of a mediator un-

der a parallel trends assumption as in a difference-in-differences (DID) design. Parallel trends, while

still being a strong and untestable assumption, allows for time-constant unmeasured confounders be-

tween themediator and the outcome, which is generally thought to bemuchweaker than the standard

no unmeasured confounders assumption that mediation analyses require.

If parallel trends is the key to our approach, canwe simply add amediator to standardDID regres-

sions to obtain the controlled direct effect of treatment? Sadly, no. In particular, if parallel trends for

the mediator only holds conditional on posttreatment confounders, then a traditional DID regres-

sion will be forced to choose between admitting confounding or posttreatment bias depending on

whether these confounders are included in the regression. All is not lost, however, as we show how

to identify and estimate a version of the controlled direct effect that is conditional on the baseline

value of the mediator (the baseline-conditional average controlled direct effect or ACDE-BC) using

inverse probability weighing, outcome regression, and a combination of the two. We also show how

to identify an alternative estimand that more closely aligns with the assumptions and approach of the

DID setting but requires no posttreatment confounders. One important limitation of these identifi-

cation results is that they do not admit a decomposition of the overall average treatment effect into

direct and indirect effects as with a standard mediation analysis.

We build on these identification results to develop multiply robust, semiparametrically efficient

estimators for these effects leveraging both propensity score and outcome regression modeling. The

“multiply robust” property of this estimator means that it will be consistent and asymptotically nor-

mal even when only a subset of these models is correctly specified, while semiparametric efficiency

means that our estimator has the lowest worst-case variance when all models are correctly specified.

Furthermore, we propose to fit this estimator utilizing the cross-fitting strategy of Chernozhukov

et al. (2018) to allow for weaker conditions on the estimation of the nuisance parameters and a sim-

ple variance estimator. This cross-fitting procedure can also allow for flexible estimation of both

the outcome regression and propensity score models through machine learning techniques (see, e.g.,

Bradic, Ji and Zhang, 2021). In both our simulation and our empirical application, we show how this
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flexible estimation can mitigate bias and inefficiencies of model misspecification.

The essential intuition behind our approach is that pretreatment measures of the outcome allow

us to view the changes in the outcome of interest as the dependent variable rather than the levels

themselves. Ourmain identification assumptions are then implied by standard sequential ignorability

assumptions applied to changes in the outcome rather than levels. Thus, the identification will be

robust to any time-constant, linear confounders for the relationship between the mediator and the

outcome. While we focus on a context where the treatment is randomly assigned, it is simple to

generalize our results to an observational situation with an additional parallel trends assumption for

treatment.

This paper brings together twobranches of the causal inference literature in the social and biomed-

ical sciences. First, we build on the difference-in-differences framework that has been a workhorse

of the quantitative social sciences. In particular, our approach closely follows on similar work on

DID estimators that leverage inverse probability weighting (IPW) estimators (Abadie, 2005) or com-

binations of IPW and regression (Sant’Anna and Zhao, 2020). Those papers generally targeted the

average treatment effect (on the treated) for a single binary treatment, whereas we focus on estima-

tion of the controlled direct effect. Second, there is a large literature on the estimation of these con-

trolled direct effects mostly in the context of “no unmeasured confounders” assumptions (Robins and

Greenland, 1992; Robins, 1994; Hernán, Brumback and Robins, 2001; Goetgeluk, Vansteelandt and

Goetghebeur, 2008; Blackwell and Strezhnev, 2022). While there have been some efforts to identify

these effects with instrumental variables (Robins and Hernán, 2009) or fixed-effects (Blackwell and

Yamauchi, 2021), there have been very few attempts to identify these quantities leveraging changes

in the outcomes over time in a difference-in-differences design as we do in this paper (see below for

some exceptions). Finally, our proposed estimators build on a growing literature on “doubly robust”

estimators (see, for example, Seaman and Vansteelandt, 2018, for a review of this literature) that has

recently broadened to allow for adaptive “machine learning” algorithms in the estimation of various

nuisance functions (Chernozhukov et al., 2018).

A handful of other studies have connectedDIDdesigns to direct effectsmore broadly. BothDeuchert,
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Huber and Schelker (2019) and Huber, Schelker and Strittmatter (2022) use a principal stratification

approach to identification and estimation of different mediation quantities under monotonicity and

parallel trends assumptions without intermediate covariates. Our work builds on their approach by

not requiring monotonicity, incorporating nonbinary mediators, and allowing baseline and interme-

diate confounders at the expense of losing the decomposition-based interpretation of the quantities

of interest. Concurrently with ourwork, Shahn et al. (2022) developed estimation techniques for esti-

mating the parameters of a structural nestedmeanmodel under aDID-style assumption similar to our

own. Their setting differs from our own in that they focus on estimating the effects of time-varying

treatments where the outcomes are measured between each treatment. In ours, we only observe the

outcome after the treatment and mediator have been realized. Finally, we discuss below how it is

possible to apply our methodology to the setting of multi-period DID with units that can switch into

and back out of treatment, greatly generalizing the staggered adoption design that has received much

recent attention in the literature.

The paper proceeds as follows. In Section 2we describe the experimental setting for the empirical

application. Section 3 introduces themain quantities of interest and establishes the core identification

results. We introduce the main estimation strategy in Section 4 along with how we leverage cross-

fitting. In Section 5 we present simulation evidence for our approach, showing how it can avoid some

of the pitfalls of the usual approaches to this problem and how flexible approaches can reduce bias

even under misspecification. Section 6 presents the results of our empirical application and Section 7

concludes with a discussion.

2 Motivating application

Can interventions affect views about nondiscrimination laws and policies without changing “hearts

and minds” about a particular minority group? Broockman and Kalla (2016) found a door-to-door

canvassing intervention reduced discrimination toward transgender people (those who identify with

a gender different from their sex assigned at birth), and our goal is to determine if this intervention

has direct effect on policy views for fixed feelings of subjective warmth toward transgender people.
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Previous studies of perspective-taking have attempted to estimate the controlled direct effect of the

intervention net its effect on “attitudinal” measures. For example, Adida, Lo and Platas (2018) showed

that perspective-taking toward Syrian refugees can increase support for admitting those refugees to

the United States and explored how the ACDE varied by a subjective rating of the refugees in the

intervention. These direct effects are crucial for understanding persuasion in diverse democracies

since it shows whether or not personal tolerance of outgroups is required to increased support for

legal tolerance of those same groups.

The Broockman and Kalla intervention consisted of a 10-minute conversation that encouraged

active “perspective taking,” where the respondent is encouraged to think about a time when they

themselves were judged negatively for being different and asked to reflect on if and how the con-

versation changed their mind. The respondents were recruited from a list of registered voters with

a mailer for a baseline survey. Respondents to this survey were then randomly assigned to either

the above intervention or a placebo conversation about recycling. The researchers followed up with

online surveys to measure outcomes at various times after these conversations: 3 days, 3 weeks, 6

weeks, and 3 months. The measurement of the key outcomes and the mediator both before and after

the treatment assignment is the crucial design aspect that will permit us to weaken our identification

assumptions to allow for linear and time-constant unmeasured confounding with parallel trends as-

sumptions.

3 Setting and assumptions

Our goal is to estimate the direct effect of an treatment (a perspective-taking intervention) on an out-

come (views of policies about transgender people) when a potentially mediating variable (subjective

feelings about transgender people) is held fixed at a particular value. To do so, we introduce some no-

tation and key assumptions. Let 𝐷𝑖𝑡 be a binary indicator of unit 𝑖 receiving treatment in period 𝑡 and

let 𝑀𝑖𝑡 ∈ M be a discrete mediator. In the simplest case, we have a binary mediatorM = {0, 1}, but

we allow for arbitrary discrete mediators. We follow the canonical differences-in-differences frame-

work where all units are in control at the start of the study so that 𝐷𝑖1 = 0, and define 𝐷𝑖 = 𝐷𝑖2. The
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mediator may take on any value in the first and second period. We also have a set of pretreatment,X𝑖 ,

and posttreatment, Z𝑖 , covariates, where Z𝑖 are causally prior to 𝑀𝑖2. We assume the observed data

O𝑖 = (X𝑖,Z𝑖, 𝐷𝑖, 𝑀𝑖1, 𝑀𝑖2, 𝑌𝑖1, 𝑌𝑖2) is independent and identically distributed across 𝑖.

Let 𝑌𝑖𝑡 (𝑑𝑡 , 𝑚𝑡) be the potential outcome for a unit with treatment set to 𝐷𝑖𝑡 = 𝑑 and medi-

ator set to 𝑀𝑖𝑡 = 𝑚. We assume the usual consistency assumption that we observe the potential

outcome of the observed treatment and mediator, or 𝑌𝑖𝑡 = 𝑌𝑖𝑡 (𝐷𝑖𝑡 , 𝑀𝑖𝑡). There are potential ver-

sions of the intermediate covariates and posttreatment mediator as well, Z𝑖 (𝑑) and 𝑀𝑖2(𝑑), with

similar consistency assumptions. Given the DID setup, we have 𝑌𝑖1 = 𝑌𝑖1(0, 𝑀𝑖1). A key feature of

differences-in-differences designs is the use of analyzing changes in the outcome over time to adjust

for time-constant confounding. To that end, let Δ𝑌𝑖 (𝑑, 𝑚) = 𝑌𝑖2(𝑑, 𝑚) −𝑌𝑖1(0, 𝑀𝑖1) be the potential

outcome changes, where we connect this to the observed changes over time as Δ𝑌𝑖 = Δ𝑌𝑖 (𝐷𝑖, 𝑀𝑖2).

Our goal is to estimate the direct effect of treatment fixing the value of the posttreatmentmediator

to a particular value. We introduce a few different estimands to this end. The first is this controlled

direct effect conditional on the mediator taking that value at baseline:

𝜏𝑚 = 𝔼{𝑌𝑖2(1, 𝑚) − 𝑌𝑖2(0, 𝑚) | 𝑀𝑖1 = 𝑚},

for some 𝑚 ∈ M. We refer to this as the baseline-conditional average controlled direct effect or

ACDE-BC. In the context of our application, this is the effect of the perspective-taking intervention

for a fixed level of subjective feelings about transgender people for units that had that same level of

subjective feelings at baseline. This effect is useful when assessing the effect for a particular value of

the mediator, but it is also useful to have a summary measure of the direct effect at differing levels of

the mediator. Let 𝑝𝑚 = ℙ(𝑀𝑖1 = 𝑚) and we can marginalize over the distribution of the baseline

mediator with

𝜏 =
∑︁
𝑚∈M

𝜏𝑚𝑝𝑚 =
∑︁
𝑚∈M

𝔼[𝑌𝑖2(1, 𝑚) − 𝑌𝑖2(0, 𝑚) | 𝑀𝑖1 = 𝑚]𝑝𝑚,

which we call the marginalized ACDE-BC. This estimand treats each level of the baseline mediator

as a separate DID study and aggregates them based on their size. In this way, it is similar to a con-

ditional version of the average factorial effect in a factorial experiment or the average marginalized
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component effect in conjoint studies.

We also investigate the controlled direct effect on those who were treated and hold their value of

the mediator constant over time,

𝛾𝑚 = 𝔼{𝑌𝑖2(1, 𝑚) − 𝑌𝑖2(0, 𝑚) | 𝐷𝑖 = 1, 𝑀𝑖1 = 𝑚, 𝑀𝑖2 = 𝑚},

which is similar to the average treatment effect on the treated in settings with a single treatment. We

call this the path-conditional average controlled direct effect or ACDE-PC, and we can marginalize it

similarly to 𝜏𝑚 and 𝜏. In the context of our application, this has the same interpretation as the ACDE-

BC except that the effect is only among those units who would (and do) remain at their baseline

subjective feelings about transgender people before and after treatment. Below, we show that this

quantity can be identified under an alternative set of assumptions that may be more plausible in some

empirical settings.

3.1 Assumptions

We build our identification from two key features of the experimental design under question: ran-

domization and panel data. Randomization allows us to identify the effects of treatment broadly,

while the panel nature of the data allows us to leverage the key identifying assumption of a difference-

in-differences design that there are parallel trends in certain potential outcomes over time. LetY(•) =

{𝑌𝑖𝑡 (𝑑, 𝑚) : 𝑡 = 1, 2 𝑑 = 0, 1 𝑚 ∈ M} be the set of all potential outcomes, with similar notation

defined for 𝑀𝑖2(𝑑) and Z𝑖 (𝑑).

Assumption 1 (Treatment Randomization). {Y(•), 𝑀𝑖2(•),Z𝑖 (•), 𝑀𝑖1} ⊥⊥ 𝐷𝑖 .

Assumption 2 (Mediator Parallel Trends). For 𝑑 ∈ {0, 1}, and 𝑚, 𝑚′, 𝑚′′ ∈ M

𝔼{Δ𝑌𝑖 (𝑑, 𝑚) | 𝐷𝑖 = 𝑑,X𝑖, 𝑀𝑖1 = 𝑚,Z𝑖, 𝑀𝑖2 = 𝑚
′} = 𝔼{Δ𝑌𝑖 (𝑑, 𝑚) | 𝐷𝑖 = 𝑑,X𝑖, 𝑀𝑖1 = 𝑚,Z𝑖, 𝑀𝑖2 = 𝑚

′′}.

Assumption 1 comes from the design of the experiment, though it is possible to generalize this

assumption to a selection-on-observables or parallel trends assumption for an observational study.

Assumption 2 states that the over-time trends in the potential outcomes are mean-independent of
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the mediator value in period 2, conditional on some covariates that might be pretreatment (X𝑖) or

posttreatment (Z𝑖). For example, suppose a unit switches their subjective feelings about transgender

people from neutral to positive (say,𝑀𝑖1 = 𝑚 to𝑀𝑖2 = 𝑚
′) before and after treatment. Parallel trends

states that their potential outcomes if they had not switched, Δ𝑌𝑖 (𝑑, 𝑚), has the same expectation as

those units who in fact remain neutral, conditional onX𝑖 and Z𝑖 . Note that this places no restrictions

on the baseline mediator, so we allow for unmeasured confounding between the outcome and the

baseline mediator. Thus, we allow for pretreatment subjective feelings to be arbitrarily related to

baseline attitudes about laws relating to transgender people.

Assumption 2 is implied by the following sequential ignorability assumption with changes in the

outcome as the dependent variable,

Δ𝑌𝑖 (𝑑, 𝑚) ⊥⊥ 𝑀𝑖2 | 𝑀𝑖1 = 𝑚, 𝐷𝑖 = 𝑑,X𝑖,Z𝑖 . (1)

The parallel trends assumptions are weaker since (a) they only place restrictions on the averages of

the potential outcomes rather than their entire distributions; and (b) they only place restrictions on

the potential outcomes for the same mediator status as the baseline mediator, 𝑚. This sequential

ignorability version of the assumption does retain the core benefit of a differences-in-differences

design: both 𝐷𝑖 and 𝑀𝑖 can still be correlated with time-constant factors that affect both 𝑌𝑖1 and

𝑌𝑖2 in the same way. That is, they still allow for time-constant unmeasured confounding, albeit in a

restricted, linear fashion.

As an example of how this unmeasured confoundingmight manifest, suppose that there is a time-

constant unmeasured confounder,𝑈𝑖 , that is correlated with 𝑀𝑖2. Further, suppose we have the fol-

lowing models for our potential outcomes:

𝑌𝑖1(𝑑, 𝑚) = 𝑓1𝑑𝑚 (X𝑖) + 𝑔(𝑈𝑖,X𝑖) + 𝜀𝑖1, 𝑌𝑖2(𝑑, 𝑚) = 𝑓2𝑑𝑚 (X𝑖,Z𝑖 (𝑑)) + 𝑔(𝑈𝑖,X𝑖) + 𝜀𝑖2,

where we assume that 𝜀𝑖𝑡 are i.i.d. and independent of all variables O𝑖 . Under this model, the usual

sequential ignorability assumption for 𝑌𝑖2(𝑑, 𝑚) and 𝑀𝑖2 conditional on just X𝑖 and Z𝑖 would not

hold because of the unmeasured confounder,𝑈𝑖 . But because that confounder enters into the model
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for potential outcomes in a linear, additive, and time-constant manner, it will be unrelated to the

changes in the potential outcomes over time.

One downside to the parallel trends in Assumption 2 is that the condition must hold for 𝑑 = 1,

where Δ𝑌𝑖 (1, 𝑚) combines two different sources of trends. There is the secular trend in the outcome

over time plus the effect of switching from untreated in 𝑡 = 1 to treated in 𝑡 = 2. Thus, for 𝑑 = 1,

this assumption implies that the over-time effect of treatment on the mediator is mean-independent

of the over-time effect of treatment on the outcome. In the above example, this holds because the

unmeasured confounding between 𝑀𝑖2 and 𝑌𝑖2, captured by 𝑔(𝑈𝑖,X𝑖), is constant across treatment

conditions. This speaks to the time-constant nature of the confounding we can adjust for in this set-

ting: it ceases to be time-constant if the confounding is affected by treatment which obviously can

change over time. This mean-independence of the treatment effect is still significantly weaker than

other no-interactions assumptions used to identify mediation effects that require no interaction be-

tween 𝐷𝑖 and 𝑀𝑖2 at the individual level (Robins, 2003).

In settingswhere the posttreatmentmediatormight be correlatedwith the controlled direct effect,

we propose an alternative identifying assumption based on parallel trends among controls only. This

assumption will help identify the ACDE-PC, 𝛾𝑚 .

Assumption 3 (Control Parallel Trends). For all 𝑚, 𝑚′, 𝑚′′ ∈ M and 𝑑 ∈ {0, 1}

𝔼{Δ𝑌𝑖 (0, 𝑚) | 𝐷𝑖 = 𝑑,X𝑖, 𝑀𝑖1 = 𝑚, 𝑀𝑖2 = 𝑚
′} = 𝔼{Δ𝑌𝑖 (0, 𝑚) | 𝐷𝑖 = 𝑑,X𝑖, 𝑀𝑖1 = 𝑚, 𝑀𝑖2 = 𝑚

′′}.

This assumption states that parallel trends holds for the mediator in the control group condition-

ing just on the pretreatment covariates. This says that, conditional on pretreatment covariates, the

value of the second periodmediator is unrelated to the trends in the control group—or in the context

of our application, that changes in subjective feelings are unrelated to changes in support for laws.

Combined with randomization of 𝐷𝑖 , this implies that every group defined by their values of 𝐷𝑖 and

𝑀𝑖2 would have followed the same average trend if, possibly contrary to fact, they had remained at

𝑀𝑖2 = 𝑚 and stayed in the control condition. Given the lack of intermediate covariates, this is similar

to a standard difference-in-differences design with a multileveled treatment (combining 𝐷𝑖 and𝑀𝑖2).
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The exclusion of posttreatment covariates in this identifying assumption is a major limitation,

so it is important to consider why they cannot be included. To identify the ACDE, we will need

to impute the trends for (𝐷𝑖 = 0, 𝑀𝑖2 = 𝑚) group among those with, say, (𝐷𝑖 = 1, 𝑀𝑖2 = 𝑚).

We typically accomplish this by adjusting for covariates through weighting or regression and those

methods would require assumptions on both the treated and control potential outcome trends as in

Assumption 2. If we include posttreatment confounders, however, our adjustment would require

information about the joint distribution of the potential outcomes of the posttreatment covariates,

Z𝑖 (1) and the potential outcomes Δ𝑌𝑖 (0, 𝑚). Unfortunately, this joint distribution is never identified

due to the fundamental problem of causal inference. We could assume Z𝑖 is unaffected by 𝐷𝑖 , but

then it ceases to be posttreatment. We could alternatively assume parallel trends holds for Z𝑖 (1, 𝑚)

with respect to Δ𝑌𝑖 (0, 𝑚), conditional on X𝑖 , 𝑀𝑖1 = 𝑚 and 𝐷𝑖 = 1, but this seems to call into ques-

tion why it would be needed to block confounding for 𝑀𝑖2. Thus, it appears that in this setting we

either can either restrict our parallel trends assumption to the control treatment of 𝐷𝑖 or allow for

posttreatment confounders, but not both simultaneously.

3.2 Identification

Causal identification is the act of connecting our counterfactual quantities of interest with functions

of the observed data. Often the causal assumptions imply there aremultiple functions of the observed

data that identify the effect of interest that correspond to different potential estimation strategies. In

our case, we will show three different identification results that rely on inverse probability weighting

(IPW), outcome regressions, and a combination of these. The last of these will help us build multiply

robust estimators that are less dependent on any one model.

We now describe the various functions of the observed data we will use in identification. First,

let 𝜋𝑑𝑚 (𝑘, x, z) = ℙ(𝑀𝑖2 = 𝑚 | 𝑀𝑖1 = 𝑘, 𝐷𝑖 = 𝑑, 𝑋𝑖 = x, 𝑍𝑖 = z) be the generalized propensity

score for 𝑀𝑖2. We define𝑊𝑖1𝑚 to be an indicator for the baseline mediator being equal to 𝑚, so that

𝑊𝑖1𝑚 = 1 when 𝑀𝑖1 = 𝑚 and 0 otherwise, with 𝑊𝑖2𝑚 being similarly defined for 𝑀𝑖2. We use the

convention that if Z𝑖 is omitted from 𝜋2(·), it represents the propensity score just as a function ofX𝑖 .
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Next we define two regressions of the outcome on the treatment, mediator, and covariates as

𝜇𝑑𝑚 (𝑘, x, z) = 𝔼[Δ𝑌𝑖 | 𝑀𝑖2 = 𝑚, 𝑀𝑖1 = 𝑘, 𝐷𝑖 = 𝑑,X𝑖 = x,Z𝑖 = z],

𝜈𝑑𝑚 (𝑘, x) = 𝔼[𝜇𝑑𝑚 (𝑘, x,Z𝑖) | 𝑀𝑖1 = 𝑘, 𝐷𝑖 = 𝑑,X𝑖 = x]
The first of these functions is the regression of the outcome changes on all the mediators, treatments,

and covariates, which we sometimes call the “long” regression. The second function is the average of

the first regression over the distribution of the intermediate covariates, Z𝑖 , as a function of treatment

and the pretreatment covariates, which we sometimes call the “short” regression.

Under Assumptions 1 and 2, we can identify the ACDE-BC in terms of either IPWwith propensity

scores,

𝜏𝑚 = 𝔼

[
𝑊𝑖1𝑚𝑊𝑖2𝑚

𝔼[𝑊𝑖1𝑚]𝜋𝐷𝑖 ,𝑚 (𝑚,X𝑖,Z𝑖)

(
𝐷𝑖

𝔼[𝐷𝑖]
− (1 − 𝐷𝑖)

(1 − 𝔼[𝐷𝑖])

)
Δ𝑌𝑖2

]
, (2)

or in terms of the outcome regressions,

𝜏𝑚 = 𝔼

[
𝑊𝑖1𝑚

𝔼[𝑊𝑖1𝑚]
(𝜈1𝑚 (𝑚,X𝑖) − 𝜈0𝑚 (𝑚,X𝑖))

]
. (3)

The IPW result shows how the ACDE-BC can be identified from a weighted average of changes in the

outcome over time for the treatment path of interest, where the weights depend on the propensity

score. The outcome regression identification uses the regressions to impute missing values of the

potential outcomes and then averages those over the distribution of the covariates. Each of these

identification results suggests an estimation strategy where we model either the propensity scores or

the outcome regressions and plug them into sample versions of (2) and (3), respectively.

Both of these results identifying the same quantity of interest implies that we may be able to

combine them in a way to increase efficiency or guard against model misspecification. In fact, we

can derive an identification result that combines these using the theory of efficient influence func-

tions (Bickel et al., 1998). For the ACDE-BC, we show in the Supplemental Materials that this theory

implies we have 𝜏𝑚 = 𝔼[𝜓𝑖,𝑚] , where

𝜓𝑖,𝑚 =
𝑊𝑖1𝑚𝑊𝑖2𝑚

𝔼[𝑊𝑖1𝑚]𝜋𝐷𝑖 ,𝑚 (𝑚,X𝑖,Z𝑖)

(
𝐷𝑖

𝔼[𝐷𝑖]
− (1 − 𝐷𝑖)
1 − 𝔼[𝐷𝑖]

) (
Δ𝑌𝑖 − 𝜇𝐷𝑖 ,𝑚 (𝑚,X𝑖,Z𝑖)

)
+ 𝑊𝑖1𝑚

𝔼[𝑊𝑖1𝑚]

(
𝐷𝑖

𝔼[𝐷𝑖]
− (1 − 𝐷𝑖)
1 − 𝔼[𝐷𝑖]

) (
𝜇𝐷𝑖 ,𝑚 (𝑚,X𝑖,Z𝑖) − 𝜈𝐷𝑖 ,𝑚 (𝑚,X𝑖)

)
+ 𝑊𝑖1𝑚

𝔼[𝑊𝑖1𝑚]
(𝜈1𝑚 (𝑚,X𝑖) − 𝜈0𝑚 (𝑚,X𝑖))

(4)
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This result takes the regression-based identification (the last line of (4)) and adjusts it by a series of

weighted functions of the residuals from the regressions, where the weights come from the IPW

approach. Estimators based on this identification assumption will be multiply robust and semipara-

metrically efficient, as we discuss more below. This multiply robust identification formula is a gen-

eralization of similar multiply robust approaches to estimating ACDEs under sequential ignorability

(Murphy et al., 2001; Orellana, Rotnitzky and Robins, 2010; van der Laan and Gruber, 2012) and are

similar to doubly robust identification of the effect of point exposures under difference-in-differences

designs (Sant’Anna and Zhao, 2020).

There are parallel results for the path-conditional estimand. Under Assumptions 1 and 3, we can

identify the ACDE-PC based on IPW with

𝛾𝑚 = 𝔼

[
𝑊𝑖1𝑚𝑊𝑖2𝑚

𝔼[𝑊𝑖1𝑚𝑊𝑖2𝑚𝐷𝑖]

(
𝐷𝑖

𝔼[𝐷𝑖]
− (1 − 𝐷𝑖)𝜋1𝑚 (𝑚,X𝑖)

(1 − 𝔼[𝐷𝑖])𝜋0𝑚 (𝑚,X𝑖)

)
Δ𝑌𝑖

]
, (5)

and based on outcome regressions with

𝛾𝑚 = 𝔼

[
𝑊𝑖1𝑚𝐷𝑖𝑊𝑖2𝑚

𝔼[𝑊𝑖1𝑚𝐷𝑖𝑊𝑖2𝑚]
(𝜇1𝑚 (𝑚,X𝑖) − 𝜇0𝑚 (𝑚,X𝑖))

]
. (6)

Finally, we can combine these with the efficient influence function approach to obtain a multiply

robust identification result, with 𝛾𝑚 = 𝔼[𝜙𝑖,𝑚] , where

𝜙𝑖,𝑚 =

(
𝑊𝑖1𝑚𝐷𝑖𝑊𝑖2𝑚

𝔼[𝑊𝑖1𝑚𝐷𝑖𝑊𝑖2𝑚]

)
(Δ𝑌𝑖 − 𝜇1𝑚 (𝑚,X𝑖))

−
(
𝑊𝑖1𝑚 (1 − 𝐷𝑖)𝑊𝑖2𝑚

𝔼[𝑊𝑖1𝑚𝐷𝑖𝑊𝑖2𝑚]

) (
𝜋1𝑚 (𝑚,X𝑖)𝔼[𝐷𝑖]

𝜋0𝑚 (𝑚,X𝑖)𝔼[1 − 𝐷𝑖]

) (
Δ𝑌𝑖 − 𝜇𝑖,0𝑚 (𝑚,X𝑖)

)
+ 𝑊𝑖1𝑚𝐷𝑖𝑊𝑖2𝑚

𝔼[𝑊𝑖1𝑚𝐷𝑖𝑊𝑖2𝑚]
(𝜇1𝑚 (𝑚,X𝑖) − 𝜇0𝑚 (𝑚,X𝑖)) .

(7)

Again, this combination of the IPW and outcome regression identification results will admit a more

robust and efficient estimator that we will describe below.

3.2.1 Connections to other identification results

While we have focused so far on the direct effects of treatment, mediation analyses often target indi-

rect effects as well. The presence of posttreatment confounders, Z𝑖 , usually precludes the possibility
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of identifying mediation quantities like the natural indirect effect (Robins, 2003; Avin, Shpitser and

Pearl, 2005) and this is true for our controlled direct effect parameter 𝜏𝑚 . While the ACDE-PC, 𝛾𝑚 , re-

quires no posttreatment confounders for identification like the mediation quantities, it also focuses

on units that do not change their mediator status before and after treatment (𝑀𝑖1 = 𝑀𝑖2 = 𝑚). It

would be possible to identify and estimate mediation quantities if we were to combine different as-

pects of our assumptions and assume that Assumption 2 holdswithout conditioning on posttreatment

confounders and we were willing to make parallel trends assumptions with regard to sequences such

as𝑌𝑖2(0, 𝑚) −𝑌𝑖1(0, 𝑚′). Under these assumptions, the standard techniques of mediation analysis can

be used to estimate quantities like the average natural direct effect (Imai, Keele and Yamamoto, 2010).

Here we focus on our less restrictive assumption and leave mediation analyses to future research.

We can also compare the identification result to how the same data might be identified under

a standard sequential ignorability assumption for levels rather than changes as might be done in

selection-on-observables analysis. This designwouldmaintain that𝑌𝑖2(𝑑, 𝑚) ⊥⊥ 𝑀𝑖2 | 𝐷𝑖 = 𝑑,X𝑖,Z𝑖
and we would identify 𝜏𝑚 using an IPW approach as 𝔼[𝜔𝑖𝑚𝑌𝑖2] , where

𝜔𝑖𝑚 =
𝑊𝑖1𝑚𝑊𝑖2𝑚

𝔼[𝑊𝑖1𝑚]𝜋𝐷𝑖 ,𝑚 (𝑚,X𝑖,Z𝑖)

(
𝐷𝑖

𝔼[𝐷𝑖]
− (1 − 𝐷𝑖)

(1 − 𝔼[𝐷𝑖])

)
,

meaning that the difference between our IPW DID identification result and the sequential ignora-

bility identification result is 𝔼[𝜔𝑖𝑚𝑌𝑖1]. This would be the estimand of attempting to estimate the

“controlled direct effect” of treatment on a pretreatment measurement of the outcome, which un-

der sequential ignorability should be zero. Thus, one way to view the DID approach we present is

leveraging the known null effect of treatment on the past to correct biases in standard sequential

ignorability approaches—a technique referred to in the statistics literature as negative control (Lip-

sitch, Tchetgen Tchetgen and Cohen, 2010; Sofer et al., 2016).

This analysis assumes we use the same conditioning set under a parallel trends approach and a

sequential ignorability approach, but what if we condition on the lagged dependent variable (LDV) in

the latter? Several authors have shown there is a bracketing relationship between the DID approach

and this LDV approach in the case of a single treatment variable (Angrist and Pischke, 2009; Ding and

Li, 2019). In Supplemental Materials A, we derive the difference between the DID target of inference
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and LDV target of inference for the ACDE-BC and for the ACDE-PC. In the latter case, we show that

when either parallel trends or sequential ignorability with an LDV holds, the two approaches should

bound the true ACDE-PC in the limit, as in Ding and Li (2019).

4 Estimation

Wenow turn to estimation of the controlled direct effects. Given the identification results, it would be

possible to construct plug-in estimators based on the IPW or outcome regression approaches where

we model either 𝜋𝑑𝑚 or {𝜇𝑑𝑚, 𝜈𝑑𝑚} and plug in our estimates into a sample version of the expecta-

tions in Section 3.2. But both IPW and outcome regression approaches can be biased, unstable, or

both when these models are incorrectly specified. To create efficient and stable estimators, we focus

on developing a set of multiply robust estimators based on the multiply robust identification results

above. These estimators are multiply robust in the sense that we will specify a number of models—

for the propensity scores and for various outcome regressions—and the resulting estimator will be

consistent and asymptotically normal when some, but not necessarily all, of the models are correctly

specified. Furthermore, even if all models are misspecified, multiply robust estimators can improve

performance over estimators that rely on any of the individual misspecified models in isolation. Fi-

nally, we integrate a relatively new technique called cross-fitting into our estimation approach so that

data-adaptivemachine learningmodels can be leveraged tomake estimates less sensitive to particular

functional form assumptions.1

Multiply robust estimators like ours are broken down into two steps: estimating the “nuisance”

functions (that is, propensity scores and outcome regressions) and then plugging these estimates into

sample versions of the identification formulas to estimate the quantity of interest. We call the propen-

sity scores and outcome regressions nuisance functions because they are not of direct interest—since

the ACDE does not correspond to any parameter of these functions—but are inputs to final estima-

tor. The first step of the multiply robust estimator is to estimate these nuisance functions with what

are often called “working models,” a name that emphasizes that we do not necessarily assume they
1For an introduction to semiparametrically efficient estimation and cross-fitting in the political science setting, see

Ratkovic (2021).
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are correctly specified. For the propensity score estimates, which we refer to as �̂�𝑑𝑚 (𝑘, x, z), com-

mon approaches would be to use a logistic regression for a binary mediator or a multinomial logistic

regression for more general discrete mediators, though our setup allows for more flexible machine

learning models. We assume another working model for the “long” regression, 𝜇𝑑𝑚 (𝑘, x, z), which

might be a simple ordinary least squares regression or something more complicated like the Lasso or

a random forest. While the propensity score and long regression models are fairly straightforward,

the estimator for the short regression is more complicated because its dependent variable (the long

regression) is itself unknown. Our approach is to construct an estimator, �̂�𝑑𝑚 (𝑘, x), that uses both

�̂�𝑑𝑚 (𝑘, x, z) and 𝜇𝑑𝑚 (𝑘, x, z) in a doubly robust manner such that only one of these twomodels need

to be correct for �̂�𝑑𝑚 (𝑘, x) to be consistent for 𝜈𝑑𝑚 (𝑘, x).2

The next step of building our multiply robust estimator is to plug in our estimated nuisance

functions into the sample version of the multiply robust identification result. In particular, we let

𝜓𝑖,𝑚 (𝜋𝑑𝑚, 𝜇𝑑𝑚, 𝜈𝑑𝑚) be the sample version of the individual-level ACDE-BC contribution to themul-

tiply robust identification results, wherewe replace any population expectation𝔼[𝐴𝑖] with its sample

version 𝑁−1 ∑𝑁
𝑖=1 𝐴𝑖 , and we have explicitly denoted the dependence on the nuisance functions. For

the ACDE-PC, we have 𝜙𝑖,𝑚 (𝜋𝑑𝑚, 𝜇𝑑𝑚). Given a set of estimators for the propensity scores and the

regression functions, we can plug them into our identification results to derive the following estima-

tors:

�̂�𝑚 =
1
𝑁

𝑁∑︁
𝑖=1

𝜓𝑖,𝑚 (�̂�𝑑𝑚, 𝜇𝑑𝑚, �̂�𝑑𝑚) �̂�𝑚 =
1
𝑁

𝑁∑︁
𝑖=1

𝜙𝑚 (�̂�𝑑𝑚, 𝜇𝑑𝑚).

We first establish a multiply robust consistency result for this estimator.

Theorem 1. (a) Under Assumptions 1 and 2 and suitable regularity conditions, �̂�𝑚 , is consistent for 𝜏𝑚

when, for 𝑑 ∈ {0, 1}, either �̂�𝑑𝑚
𝑝
→ 𝜋𝑑𝑚 or both 𝜇𝑑𝑚

𝑝
→ 𝜇𝑑𝑚 and �̂�𝑑𝑚

𝑝
→ 𝜈𝑑𝑚 . (b) Under Assumptions 1

and 3, �̂�𝑚 is consistent for 𝛾𝑚 when either �̂�𝑑𝑚
𝑝
→ 𝜋𝑑𝑚 or 𝜇𝑑𝑚

𝑝
→ 𝜇𝑑𝑚 .

2The exact form of this estimator is

�̂�𝑑𝑚(𝑘, x) = �̂�

[
𝜇𝑑𝑚 (𝑘, x,Z𝑖) +

𝑊𝑖2𝑚 (Δ𝑌𝑖 − 𝜇𝑑𝑚 (𝑘, x,Z𝑖))
�̂�𝑑𝑚(𝑘, x,Z𝑖)

| 𝑀𝑖1 = 𝑘, 𝐷𝑖 = 𝑑,X𝑖 = x
]
,

where �̂�[· | 𝐴 = 𝑎] is the working regression of a variable as a function 𝐴 = 𝑎. This working regression may be ordinary
least squares or some other more flexible technique like the other working models.
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Theorem1 ensures that our estimatorswill be consistent for their intended estimandswhen either

the propensity score model for the posttreatment mediator or the outcome regressions are correctly

specified. While we focus on the case where treatment is randomized, this result could easily be ex-

panded to handle a treatment that satisfies selection on observables or a parallel trends assumption. In

that case, we would require an additional propensity score model for 𝐷𝑖 and the number of correctly

specified model combinations that would ensure consistency would expand.

In addition to being multiply robust, our estimator �̂�𝑚 has the efficient influence functionwhen the

working models all converge to their true values. The influence function of a regular estimator de-

scribes how each unit influences the asymptotic distribution of the estimator. In particular, when the

nuisance functions are reasonably well-behaved or we employ the cross-fitting approach described

below, we can write the centered and scaled estimator as

√
𝑁 (�̂�𝑚 − 𝜏𝑚) =

1
√
𝑁

𝑁∑︁
𝑖=1

𝜓𝑖,𝑚 + 𝑜𝑝 (1),

where 𝑜𝑝 (1) indicates things that will converge in probability to 0 and can be ignored asymptotically.

Here, 𝜓𝑖,𝑚 = 𝜓𝑖,𝑚 −𝑊𝑖1𝑚𝜋
−1
1𝑚𝜏𝑚 is the influence function and when the working models are correctly

specified, this will be the efficient influence function, meaning that our estimators will asymptotically

have the lowest worst-case asymptotic variance among all semiparametric estimators. Thus, in this

“minimax” sense, our estimators are the best possible form of estimators given the data and assump-

tions we have made. In the Supplemental Materials, we derive these efficient influence functions and

show how they related to the above identification formulas.

4.1 Variance estimation and crossfitting

As we have shown, to obtain estimators from the doubly robust estimator �̂�𝑚 we first need to fit a

series of working models. When we “double dip” and use the same observations to fit the outcome

regressions and propensity scores as we use in the sample mean 𝑁−1 ∑𝑁
𝑖=1 𝜓𝑖,𝑚 (�̂�𝑑𝑚, 𝜇𝑑𝑚, �̂�𝑑𝑚), our

estimates can become less stable and we must account for using the data twice in our uncertainty

estimates.
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We can avoid both of these issues by relying on a estimation framework called cross-fitting, a gen-

eralization of the long-used method of sample splitting (Chernozhukov et al., 2018). Sample split-

ting is a simple way to make the estimates of the nuisance parameters (the working models for the

propensity scores and outcome regressions here) independent of the final estimates of the quantities

of interest. We first randomly split the sample into two groups, the main and auxiliary samples. We

use the auxiliary sample to fit the working models, then use those fitting models to obtain predicted

values for the main sample to plug into the main estimation of the �̂�𝑚 . The downside of sample split-

ting is that we only use half of our sample for the estimation of the main quantities of interest, which

motivated the development of cross-fitting. With cross-fitting, we simply swap the roles of the main

and auxiliary samples and obtain a second estimate of the quantity of interest. We then take the av-

erage of the two “sample split” estimators as our final estimate. Cross-fitting retains the benefits of

sample-splitting in terms ofmaking inferencemore stable and straightforwardwithout the drawback

of reduced efficiency. We can further generalize this approach to more than a single split by creating

𝐾 roughly equally-sized folds, where 𝐾 ≥ 2. Finally, to account for the variability of this splitting

process, we repeat this process several times and take the median of the estimates across the different

splits as recommmended by Chernozhukov et al. (2018).

To be specific, we randomly partition the data into 𝐾 groups by drawing (𝐵1, . . . , 𝐵𝑛) indepen-

dently of the data, where 𝐵𝑖 is distributed uniformly over {1, . . . , 𝐾}. We take 𝐵𝑖 = 𝑏 to mean that

unit 𝑖 is split into group 𝑏. Let �̂�𝑑𝑚,−𝐵𝑖 be the estimate of the propensity scores using units not in unit

𝑖’s partition, with similar notation for the outcome regressions. Then we can write the cross-fitting

estimator as

�̂�𝑚 =
1
𝑁

𝑁∑︁
𝑖=1

𝜓𝑖,𝑚 (�̂�𝑑𝑚,−𝐵𝑖 , 𝜇𝑑𝑚,−𝐵𝑖 , �̂�𝑑𝑚,−𝐵𝑖 ),

with �̂�𝑚 defined similarly. In this setup, the propensity scores and outcome regression estimates used

for unit 𝑖 are orthogonal to the data for unit 𝑖 by the i.i.d. assumption, which simplifies the asymptotic

variance of these estimators. We prove in the Supplemental Materials that under some conditions on

the nuisance estimation
√
𝑁 (�̂�𝑚 − 𝜏𝑚) will converge in distribution to 𝑁 (0,𝔼[𝜓2

𝑖,𝑚
]), which means
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that we can easily obtain consistent variance estimators for this procedure with

𝕍 [�̂�𝑚] =
1
𝑁2

𝑁∑︁
𝑖=1

{
𝜓𝑖,𝑚 (�̂�𝑑𝑚,−𝐵𝑖 , 𝜇𝑑𝑚,−𝐵𝑖 , �̂�𝑑𝑚,−𝐵𝑖 ) − �̂�𝑚

}2
𝕍 [�̂�𝑚] =

1
𝑁2

𝑁∑︁
𝑖=1

{
𝜙𝑖,𝑚 (�̂�𝑑𝑚,−𝐵𝑖 , 𝜇𝑑𝑚,−𝐵𝑖 ) − �̂�𝑚

}2
.

These variances can easily be plugged into the usual formulas to conduct hypothesis tests or confi-

dence intervals (e.g., �̂�𝑚 ± 1.96× 𝕍 [�̂�𝑚]1/2). In the simulations below, we show that these confidence

intervals have excellent coverage when the nuisance models are correctly specified.

As mentioned above, there are some conditions on the nuisance function estimators that must be

met beyond consistency for the cross-fitting estimator to have these desirable properties. As we show

in the Supplemental Materials, the product of the estimation error from the outcome and propensity

score estimators must converge to 0 at a sufficiently fast rate (faster than 𝑁−1/4). The practical impli-

cation of this requirement is that the estimators cannot be “too flexible” and rules out, for instance,

completely nonparametric density estimators for these functions. The estimators are not, however,

required to be traditional parametric models. Indeed, an additional benefit of this crossfitting pro-

cedure is that it allows for “plug-and-play” integration with machine learning algorithms so that we

can replace, say, a standard logistic regression model for a propensity score with an data-adaptive

algorithm such as the logistic Lasso. Bradic, Ji and Zhang (2021) has derived the rate conditions on

these types of algorithms needed to ensure consistent and asymptotic normality of dynamic treat-

ment effects like the ones we study here. In our own empirical application, we leverage a version of

the Lasso for outcome regressions and a random forest approach for estimation of the generalized

propensity score for a three-level discrete mediator.

4.2 Extension to Time-varying Treatments

Given our application, we have focused on a framework where the two causal variables of interest—

the treatment and the mediator—are distinct. But our approach can also be used in situations where

the treatment and the mediator are two measurements of the same variable over time. This type of

time-varying treatment is very common in the social and biological sciences. There is, in fact, a large
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literature that studies difference-in-differences designs with time-varying treatments (Goodman-

Bacon, 2021; Sun and Abraham, 2021; Callaway and Sant’Anna, 2021), though the vast majority of

these studies tend to assume that (a) there is only one switch from a control condition to a treat-

ment condition (often referred to as a staggered adoption design) and/or (b) only contemporaneous,

not lagged, treatment affects the outcome (a so-called no carryover assumption). Our approach would

allow for the estimation of direct effects of lagged treatment in cases where a unit can switch back

from treatment to control.

We consider a three-period setting where wemap our original causal variables, (𝑀𝑖1, 𝐷𝑖, 𝑀𝑖2), to

threemeasurements of the treatment variable, (𝐷𝑖0, 𝐷𝑖1, 𝐷𝑖2). Tomatch the standardDID setting, we

assume that 𝐷𝑖0 = 0 for all 𝑖, but that (𝐷𝑖1, 𝐷𝑖2) can take any value in {0, 1}2. Let𝑌𝑖0 = 𝑌𝑖0(0) be the

baseline measure of the outcome and let 𝑌𝑖2(𝑑1, 𝑑2) be the potential outcome after both treatments

are administered. Then our main identifying assumption becomes

𝔼[𝑌𝑖2(𝑑1, 𝑑2) − 𝑌𝑖0(0) | 𝐷𝑖 = (0, 𝑑1, 1),X𝑖,Z𝑖] =

𝔼[𝑌𝑖2(𝑑1, 𝑑2) − 𝑌𝑖0(0) | 𝐷𝑖 = (0, 𝑑1, 0),X𝑖,Z𝑖],

which would allow us to identify the ACDE of 𝐷𝑖1, 𝔼[𝑌𝑖2(1, 0) − 𝑌𝑖2(0, 0)] under randomization of

𝐷𝑖1. This identification is exactly the same as the identification of 𝜏𝑚 above. If we make a parallel

trends assumption for 𝐷𝑖1 instead of a randomization assumption, then we would be able to identify

the ACDE on the treated, 𝔼[𝑌𝑖2(1, 0) − 𝑌𝑖2(0, 0) | 𝐷𝑖1 = 1]. These results imply that our estimators

can be used to estimate the effects of treatment histories with time-varying confounding and with-

out a strict exogeneity assumption. To accomplish this, one simply uses the same multiply robust

estimators as above using (𝐷𝑖0, 𝐷𝑖1, 𝐷𝑖2) in place of (𝑀𝑖1, 𝐷𝑖, 𝑀𝑖2). It should be possible to extend

our approach to an arbitrary number of time periods, though this is beyond the scope of the current

paper.

5 Simulation Results

We now evaluate the finite-sample performance of our estimator with a simulation experiment. We

are interested in how the multiply robust estimation techniques compare to traditional difference-
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Figure 1: Directed acyclic graph showing the simulation setup.

in-differences approaches, but also how different machine learning techniques in the multiply robust

approach are able to handle misspecification. We evaluate the performance of our estimator against

two alternative approaches for computing direct effects—traditional regression DID controlling for

baseline covariates X𝑖 and the mediator, and the same specification also controlling for intermediate

covariates Z𝑖 . As the results show, our method performs well against these alternatives even when

the working models are misspecified, particularly at larger sample sizes.

The DGP follows the DAG in Figure 1. Treatment has independent probability 𝑝𝑑 = 0.5, and we

generate two observed baseline variables, X𝑖 = (𝑋𝑖1, 𝑋𝑖2)′ ∼ N2(0, 𝜎2
𝑥 I2), where 𝜎2

𝑥 = 0.01, and two

unobserved independent baseline variables𝑈𝑖1,𝑈𝑖2 ∼ N(0, 0.01). We draw the baseline mediator as

𝑀𝑖1 = 𝕀(𝑋𝑖1 + 𝑋𝑖2 + 𝜀𝑖𝑚1 ≥ 0). The baseline outcome follows 𝑌𝑖1 = 1 + 0.4𝑀𝑖1 + X′
𝑖
𝜷 + 𝜀𝑖𝑦1, where

𝜷 = (0.5, 0.5)′, and then we generate the intermediate confounders with heterogeneous treatment

effects, 𝑍𝑖 𝑗 = 𝛿𝑖 𝑗𝐷𝑖 + 5𝑈𝑖 𝑗 + 𝜀𝑖𝑧 𝑗 , where 𝛿𝑖 𝑗 ∼ N(0.25, 0.0025) for 𝑗 ∈ {1, 2}. The posttreatment

mediator follows 𝑀𝑖2 = 𝕀(−1 + 1.5𝐷𝑖 + 0.4𝑀𝑖1 + Z′
𝑖
𝜸 + 𝜀𝑖𝑚2 ≥ 0), where 𝜸 = (0.75, 0.75)′. The

second period outcome is

𝑌𝑖2 = 𝑌𝑖1 + 0.4𝑀𝑖1 + 0.2𝐷𝑖 + 0.3𝑀𝑖2 + 0.1𝐷𝑖𝑀𝑖2 + 5𝑈𝑖1 + 5𝑈𝑖2 + 𝜀𝑖𝑦2,

where (𝜀𝑖𝑚1, 𝜀𝑖𝑦1, 𝜀𝑖𝑧1, 𝜀𝑖𝑧2, 𝜀𝑖𝑚2, 𝜀𝑖𝑦2) ∼ N6(0, Σ𝜀) and Σ𝜀 is a diagonal matrix with diag(Σ𝜀) =

(0.01, 0.01, 0.04, 0.04, 1, 0.01)′. In order to test how thesemethods performwhen the relevantmod-
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els are misspecified, we also construct transformations of the covariates 𝑋𝑖1, 𝑋𝑖2, 𝑍𝑖1, 𝑍𝑖2 as follows,

employing a similar setup to Kang and Schafer (2007):

𝑋∗
𝑖1 = (exp(𝑋𝑖1/2) − 1)2, 𝑋∗

𝑖2 = 𝑋𝑖2/(1 + exp(𝑋𝑖1)) + 10,

𝑍∗
𝑖1 = (𝑋𝑖1𝑍𝑖1/25 + 0.6)3, 𝑍∗

𝑖2 = (𝑋𝑖2 + 𝑍𝑖2 + 20)2.

For each simulated dataset, we construct five estimates for the marginalized ACDE-BC, 𝜏. First,

we simply regressΔ𝑌𝑖 = 𝑌𝑖2−𝑌𝑖1 on𝐷𝑖 , controlling for𝑀𝑖1,𝑀𝑖2, 𝑋𝑖1 and 𝑋𝑖2 (“DID +Mediator”). Sec-

ond, we add the intermediate covariates to this specficiation (“DID +Mediator + Covariates”). Finally,

we use ourmultiply robust ACDE estimatorwith the same outcome regression as the DID +Mediator

+ Covariate estimator with three different propensity scores estimators for 𝑀𝑖2: logistic regression

(“MR ACDE (Logit)”), the Lasso (“MR ACDE (Lasso)”), and random forests (“MR ACDE (RF)”). For the

Lasso and random forest approaches, we include all squared terms and two-way interactions of the

covariates.

We ran 1000 replications of this DGP and computed the average bias, the root mean square error

(RMSE), and the coverage of nominal 95% confidence intervals for sample sizes of 250, 500, and 1000

and using either the “correctly specified” covariates (𝑋𝑖1, 𝑋𝑖2, 𝑍𝑖1, 𝑍𝑖2) or the “incorrectly specified”

transformed versions (𝑋∗
𝑖1, 𝑋

∗
𝑖2, 𝑍

∗
𝑖1, 𝑍

∗
𝑖2). We calculated the true values of 𝜏𝑚 and 𝜏 as part of the

Monte Carlo simulation.

Figure 2 presents the results of this simulation. Under both correctly and incorrectly specified

models, we can see that the DID estimators exhibit large biases at all sample sizes and have corre-

spondingly high RMSEs and low coverage. This performance is being driven, as expected, by con-

founding biaswhen excluding the intermediate covariates and posttreatment biaswhen the covariates

are included. Under this DGP, these biases can bemade larger or smaller bymanipluating the strength

of the relationships on those paths.

The performance of our MR ACDE estimator varies more across the correct and incorrect speci-

fication and across the estimation engines used. When the correctly specified variables are used, all of

the multiply robust methods are similar in having low bias, low RMSE, and roughtly correct cover-

age. However, when using the incorrectly specified covariates, there is a much larger gap between the
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Figure 2: Performance of our multiply robust estimator as compared with difference-in-differences
controlling formediator and baseline covariates and difference-in-differences controlling for theme-
diator, baseline covariates, and intermediate covariates.

threeMR approaches. All of these have higher bias in themisspecified setting, but the increase ismore

muted for the random forest compared to the others. The least flexible approach, the logit, shows the

largest biases. The Lasso approach here is at somewhat of a disadvantage because we only include

squares and first-order interactions, but the true specification has cubic transformations. A richer set

of basis functions could improve its performance. These results show that even when hampered by

misspecified covariates, the flexible approaches can reduce bias.

6 Empirical Application

We now apply these methods to estimate whether a pro-transgender intervention changes support

for nondiscrimination laws, holding constant feelings of warmth towards transgender people. To
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do so, we rely on data from a study by Broockman and Kalla (2016). The authors implemented a

canvassing intervention that consisted of a brief conversation, encouraging respondents to engage in

“perspective taking.” Respondents were recruited from a list of registered voters, and were first asked

to complete a baseline survey. Households were then assigned to receive either the perspective taking

intervention (treatment) or information about recycling (control).

In addition to the baseline survey prior to the intervention, respondents completed four post-

intervention surveys, which were conducted three days, three weeks, six weeks and three months

after the intervention. Themain outcome of interest is a seven-point scale of support for transgender

nondiscrimination laws. The main finding in Broockman and Kalla (2016) is that the canvassing

intervention increased support for nondiscrimination laws in the third and fourth post-intervention

periods. (The authors speculate that the absence of treatment effects in the first two periods could be

due to respondents’ lack of knowledge about the meaning of the term ‘transgender’ and so included

a definition in the subsequent waves.) While Broockman and Kalla (2016) report treatment effects

based on cross-sectional differences between treatment and control groups after the intervention,

we instead use changes in the outcome Δ𝑌𝑖 .

Our goal is to understand how subjective feelings toward transgender people may be a part of

the effect of these interventions. To this end, we define our mediator to be survey items that measure

feelings towards transgender people, which are observed in the baseline period and all posttreat-

ment periods. For the purposes of the empirical application, we define 𝑌𝑖2 such that it is measured

six weeks after the intervention, while 𝑀𝑖2 is measured three weeks after the intervention. To con-

struct the mediator, we rely on the transgender feeling thermometer, which is measured on a scale

of 0–100, where higher values indicate “warmer” feelings toward the group. As we show in Figure 3,

thermometer scores often show a significant amount of clumping at “even” numbers such as 0, 50, and

100, and much of the informational content could be summarized as a person feeling cooly, warmly,

or neutral about a group. Thus, we transform these scores into a three-level discrete variable such

that 𝑀𝑖1 = 1 for participants who score below 50 on the thermometer (cooler feelings), 𝑀𝑖1 = 2 for

participants who score exactly 50 (neutral feelings), and 𝑀𝑖1 = 3 for participants who score above 50
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points (warm feelings). We use the same transformation for 𝑀𝑖2.
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Figure 3: Distribution of the mediator at baseline, prior to discretizing

In addition, we include several pre- and posttreatment covariates, which mainly measure basic

demographics (age, race, gender, etc), political leanings, and gender-related attitudes. We present a full

list of these covariates in Table SM.1 in the Supplemental Materials. All pretreatment covariates are

measured at baseline, whilewe obtain posttreatment covariates by differencing the first posttreatment

period (three days after the intervention) relative to the baseline. For the ACDE-BC and ACDE-PC

estimators, we use adaptive estimation for the nuisance functions with the lasso approach of Belloni

and Chernozhukov (2013) from the hdm R package for the outcome regression and random forests

from the ranger R package for the propensity scores for 𝑀𝑖2. For these, we pass all the covariates

plus first-order interactions and squared terms for continuous variables (though these flexible terms

are not included for the standardDID estimates). As dictated by our identifying assumptions, we omit

intermediate covariates for the estimation of the ACDE-PCs. We restrict our sample to individuals

for which all covariates are observed (𝑁 = 369).

We present the results in Figure 4, which includes the estimates �̂�𝑚 (circles) and �̂�𝑚 (triangles), as

well as standard difference-in-differences estimates. The DID results just conditioning on baseline

covariates (“DID w/ X no mediator”) replicate the main results of the original study: the perspective-

taking intervention increased support for nondiscrimination laws. The magnitude of the DID esti-

mate (0.304) is very similar to the cross-sectional estimate of the effects from the original study (0.36).
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Figure 4: Controlled direct effect estimates using different estimation strategies.

Once we add intermediate covariates and the mediator into our DID analysis, however, the effect at-

tenuates by almost 40% (0.188). Such a change might led an analyst to conclude that feelings about

transgender people mediate the effect of the intervention. Of course, this ignores the potential for

posttreatment bias in conditioning on the intermediate confounders.

When we look at our approach to estimating the controlled direct effects of the treatment, we see

a slightly different and more nuanced set of results. For both of the marginal ACDEs, we see that the

direct effect estimates are larger in magnitude than the DID baseline, by around 56% in the case the

ACDE-BC. These effects also have much larger standard errors due in part to the estimation of the

nuisance functions. The uncertainty in these results makes it difficult to compare to the overall DID

estimates, but in terms of the point estimates, we would reach the opposite conclusion as the naive

DID approach of simply conditioning on the intermediate covariates and mediator.

Figure 4 also shows the variation in the ACDE-BC and ACDE-PC across the “controlled” level

of the mediator. The ACDEs for remaining feeling negatively toward transgender people (𝑚 = 1)

are actually slightly negative, though these effects are not statistically significant. The ACDEs for

remaining feeling positively (𝑚 = 3) are almost identical in the point estimate to the baseline DID

estimate with larger standard errors. Finally, the ACDEs for remaining neutral are both much larger
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than the baseline estimates but also statistically significant. Note that this is driven both by the direct

effect nature of the estimand and how the overall effect of the intervention for those that felt neutrally

at baseline is also higher.

These results are substantively important for the study of political behavior since they show

that perspective-taking conversations can have political effects even when subjective feelings are un-

changed. This points to the ability for political campaigns to persuade citizens about legal discrimi-

nation without necessarily altering their own personal feelings about the group, though we acknowl-

edge that our effects are concentrated among those with neutral feelings toward transgender people

at baseline. This is vital since a number of studies in political science have shown that subjective

feelings toward outgroups are often formed in childhood and very difficult to change durably (Sears

and Funk, 1999; Tesler, 2015). This is a positive sign for the health of democracies and how they can

increase tolerant public policies without necessarily increasing interpersonal tolerance.

-1

0

1

2

3

1: All covars + sq
terms + ints

2: All covars 3: Indices +
Demographics

4: Only Demographics
in X

Es
tim

at
e Uses ML?

No

Yes

Thick bars = 90% CIs, Thin bars = 95% CIs
ML-based estimates use LASSO for outcome, random forests for proensity score

Figure 5: ACDE estimates for 𝑚 = 2 across different covariate specifications for the adaptive/ML
(blue triangles) and standard (red circles) estimation of the nuisance functions.

Finally, we also investigate how the use of adaptive estimation techniques for the nuisance func-

tions impacts the stability of our estimates across different specification choices. In particular, we

varied the choice of variables to pass to either a standard set of models (OLS for the outcome re-

gression and a multinomial logistic regression for the propensity scores) or the adaptive estimators
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described above. The sets of variables are (a) only demographics in the baseline covariates, (b) demo-

graphics and LGBT opinion indices in the baseline covariates, (c) the full set of baseline covariates,

and (d) the full set of covariates plus squared terms for all continuous variables and all first-order

interactions. In this last specification, the number of covariates is far larger than the number of units,

so we only used the adaptive design for this specification. Figure 5 presents the results, which show

that the adaptive design has amassive impact on the stability of estimates and their uncertainty across

these specifications. The increase in uncertainty when adding additional controls is overwhelming

for the standard estimators, but has almost no impact on the adaptive approach. Thus, the combi-

nation of cross-fitting and adaptive nuisance estimation perhaps provides a path toward much less

model-dependent estimates and less opportunities for intentional or unintentional p-hacking.

7 Conclusion

In this paper, we have introduced a novel identification strategy for controlled direct effects under

a difference-in-difference design embedded in a multiwave experimental study. Our key identifying

assumptions allow for the mediator to be related to the baseline levels of the potential outcomes,

which is far weaker than the selection-on-observables assumption traditionally used to identify the

controlled direct effects. Our assumptions do require so-called parallel trends assumptions, meaning

that themediatormust be unrelated to the changes in the potential outcomes over time. This approach

highlights how having access to baseline measures of the outcome can allow researchers to weaken

key assumptions in the pursuit of evaluating causal mechanisms. We have also built on recent work

on doubly and multiply robust estimators to propose a multiply robust, semiparametrically efficient

estimator for our proposed quantities. These estimators allow researchers to take full advantage of

adaptive machine learning algorithms for estimating nuisance functions like propensity scores and

outcome regressions.

Through both simulations and the empirical application, we have shown that proper adjustment

for intermediate covariates can lead to different substantive conclusions. Our simulations show that

naive adjustment can lead to severe bias and undercoverage of confidence intervals. In the empiri-
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cal application, we saw the estimated direct effect of a perspective-taking intervention fixing feeling

thermometer scores move in different directions compared to the overall average effects of the inter-

vention along with large differences in the uncertainty of the estimates. Untangling the mechanisms

in this case is somewhat difficult due to the estimation uncertainty, but we can detect large differences

between the estimated direct effects for different levels of the mediator.

There are several avenues for future research in this area. We have focused here on a situation

with effectively two time periods and two causal variables (a treatment and a mediator), but it should

be possible to generalize this approach to handle treatment history of arbitrary length. This might

allow for identification and inference for causal effects in marginal structural models with weaker as-

sumptions on confounding between the outcome and the treatment history. In addition, in situations

with more pretreatment measurements it may be possible to use those past measurements to mea-

sure and correct for deviations from the parallel trends assumptions. These are the key identification

assumptions for our approach and attention to them is crucially important.
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Supplemental Materials (to appear online)

A Comparison to Sequential Ignorability with a Lagged De-
pendent Variable

In this sectionwe contrast the targets of inference under the difference-in-differences framework and

the sequential ignorability with lagged dependent variable framework. For simplicity, we assume a

binary mediator and that 𝑀𝑖1 = 0 throughout and suppress any such conditioning statement. Let

𝐹𝑌1 (𝑦 | 𝑑, 𝑚, x, z) be the cumulative density function of 𝑌𝑖1 given 𝐷𝑖 = 𝑑, 𝑀𝑖2 = 𝑚, X𝑖 = x, and

Z = z, 𝐺𝑌1 (𝑦 | 𝑑, x, z) be the same distribution function without conditioning on 𝑀𝑖2, and let

𝜇(𝑑, 𝑚, x, z, 𝑦) = 𝔼[𝑌𝑖2 | 𝐷𝑖 = 𝑑, 𝑀𝑖2 = 𝑚,X𝑖 = x,Z𝑖 = z, 𝑌𝑖1 = 𝑦].

Next, we describe the targets of inference for both the DID and LDV approaches. These are

quantities that are, under each set of assumptions, identify the ACDE but remain valid observational

quantities evenwhen those assumptions do not hold. Our bracketing result will order these quantities

and so is valid regardless of whether or not the identification assumptions actually hold. First, we

write the quantity that, under parallel trends, would identify 𝔼[𝑌𝑖2(0, 0)]:

𝜇0,DID = 𝔼[𝑌𝑖1 | 𝐷𝑖 = 0, 𝑀𝑖2 = 0] +
∫
x,z

𝔼[Δ𝑌𝑖 | 𝐷𝑖 = 0, 𝑀𝑖2 = 0,X𝑖 = x,Z𝑖 = z]𝑑𝑃(x, z | 𝐷𝑖 = 0),

with 𝜇1,DID being defined similarly. Under Assumption 1 and 2, �̃�DID = 𝜇1,DID−𝜇0,DID would identify

the ACDE, 𝜏. Under a lagged dependent variable, the g-computational formula gives the following

identification formula for 𝔼[𝑌𝑖2(0, 0)]:

𝜇0,LDV =

∫
x,z,𝑦

𝔼[𝑌𝑖2 | 𝐷𝑖 = 0, 𝑀𝑖2 = 0,X𝑖 = x,Z𝑖 = z, 𝑌𝑖1 = 𝑦]𝑑𝐺𝑌1 (𝑦 | x, z)𝑑𝑃(x, z | 𝐷𝑖 = 0),

with 𝜇1,LDV defined similarly. If LDV sequential ignorability holds,𝑌𝑖2(𝑑, 𝑚) ⊥⊥ 𝑀𝑖2 | 𝐷𝑖 = 𝑑,X𝑖,Z𝑖, 𝑌𝑖1,

then �̃�LDV = 𝜇1,LDV − 𝜇0,LDV would identify the ACDE.

Theorem 2. The difference between 𝜇0,DID and 𝜇0,LDV is

�̃�DID − �̃�LDV =

∫
x,z,𝑦

Δ1(𝑦)
(
𝑑𝐹𝑌1 (𝑦 | 1, 0, x, z) − 𝑑𝐺𝑌1 (𝑦 | 1, x, z)

)
𝑑𝑃(x, z | 𝐷𝑖 = 0)

−
∫
x,z,𝑦

Δ0(𝑦)
(
𝑑𝐹𝑌1 (𝑦 | 0, 0, x, z) − 𝑑𝐺𝑌1 (𝑦 | 0, x, z)

)
𝑑𝑃(x, z | 𝐷𝑖 = 0),

(8)
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where Δ𝑑 (𝑦) = 𝜇(𝑑, 0, x, z, 𝑦) − 𝑦.

Proof. Using iterated expectations, we can write 𝜇0,DID as

𝜇0,DID =

∫
x,z,𝑦

𝑦𝑑𝐺𝑌1 (𝑦 | x, z)𝑑𝑃(x, z | 𝐷𝑖 = 0)

+
∫
x,z,𝑦

𝔼[Δ𝑌𝑖 | 𝐷𝑖 = 0, 𝑀𝑖2 = 0,X𝑖 = x,Z𝑖 = z, 𝑌𝑖1 = 𝑦]𝑑𝐹𝑌1 (𝑦 | 0, 0, x, z)𝑑𝑃(x, z | 𝐷𝑖 = 0)

=

∫
x,z,𝑦

𝑦𝑑𝐺𝑌1 (𝑦 | x, z)𝑑𝑃(x, z | 𝐷𝑖 = 0)

+
∫
x,z,𝑦

Δ0(𝑦)𝑑𝐹𝑌1 (𝑦 | 0, 0, x, z)𝑑𝑃(x, z | 𝐷𝑖 = 0)

Combining this with the definition of 𝜇0,LDV, we obtain

𝜇0,DID − 𝜇0,LDV =

∫
x,z,𝑦

Δ(𝑦)𝑑𝐹𝑌1 (𝑦 | 0, 0, x, z)𝑑𝑃(x, z | 𝐷𝑖 = 1)

−
∫
x,z,𝑦

Δ0(𝑦)𝑑𝐺𝑌1 (𝑦 | x, z)𝑑𝑃(x, z | 𝐷𝑖 = 0).

Applying the same logic to 𝜇1,DID − 𝜇1,LDV yields the result. □

Our ACDE-PC estimand, on the other hand, has a more specific relationship with the sequential

ignorability approach. In fact, because the identification assumptions for that estimand are simply

parallel trends for a four-category outcome, we can apply the results of Ding and Li (2019) to obtain

a bracketing result between theDID estimand and the LDV estimand. Let �̃�DID and �̃�LDV be the targets

of inference for these two settings, identified in a similar manner to the two above. Following Ding

and Li (2019), we first invoke conditions on the data generating process:

Condition 1 (Stationarity). 𝜕𝜇(𝑑, 𝑚, x, z, 𝑦)/𝜕𝑦 < 1 for all 𝑦.

Condition 2 (Stochastic Monotonicity). Either (a) 𝐹𝑌1 (𝑦 | 𝑑, 1, x, z) ≥ 𝐹𝑌1 (𝑦 | 𝑑, 0, x, z) for all 𝑦; or

(b) 𝐹𝑌1 (𝑦 | 𝑑, 0, x, z) ≥ 𝐹𝑌1 (𝑦 | 𝑑, 1, x, z).

Condition 1 is a limit on the growth of the time series of the outcome and with a linear model,

it would require that the coefficient on the lagged dependent variable be less than one. This is a

commonly invoked assumption with panel and time-series data. Condition 2 characterizes the rela-

tionship between the lagged dependent variable and the mediator, with Condition 2(a) meaning that
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the group with 𝑀𝑖2 = 1 has higher baseline outcomes across the entire distribution compared to the

𝑀𝑖2 = 0 group and vice versa for Condition 2(b). We say Condition 1 and 2 are conditions rather

than assumptions because they are both empirically testable Ding and Li (2019).

Ding and Li (2019) have shown that under Conditions 1 and 2(a) we have �̃�DID ≥ �̃�LDV, and under

Conditions 1 and 2(b), we have �̃�DID ≤ �̃�LDV. Thus, if one of these two sets of conditions holds and

one of the two sets of identifying assumptions holds, then the two estimands will bracket the true

value of the ACDE-PC.

B Proofs

B.1 Identification

Here, we first prove the IPW identification result for 𝜏𝑚 . The proof for 𝛾𝑚 is very similar and so we

omit it. Below we combine X𝑖 and Z𝑖 into a single vector X𝑖 since their role in the proof is the same.

We begin with the first term of 𝜏𝑚 . By randomization and the law of total probability we have:

𝔼{𝑌𝑖2(1, 𝑚) | 𝑀𝑖1 = 𝑚} = 𝔼{𝑌𝑖2(1, 𝑚) | 𝐷𝑖 = 1, 𝑀𝑖1 = 𝑚}

=

∫
x
𝔼{𝑌𝑖2(1, 𝑚) | 𝐷𝑖 = 1, 𝑀𝑖1 = 𝑚,X𝑖 = x}𝑑𝑃(x | 𝐷𝑖 = 1, 𝑀𝑖1 = 𝑚)

= 𝔼(𝑌𝑖1(0, 𝑚) | 𝐷𝑖 = 1, 𝑀𝑖1 = 𝑚)

+
∫
x
𝔼{𝑌𝑖2(1, 𝑚) − 𝑌𝑖1(0, 𝑚) | 𝐷𝑖 = 1, 𝑀𝑖1 = 𝑚,X𝑖 = x}𝑑𝑃(x | 𝐷𝑖 = 1, 𝑀𝑖1 = 𝑚)

The first term is identified and, using Assumption 2 we can write the second term as:∫
x
𝔼{Δ𝑌𝑖 (1, 𝑚) | 𝐷𝑖 = 1, 𝑀𝑖1 = 𝑚,X𝑖 = x, 𝑀𝑖2 = 𝑚}𝑑𝑃(x | 𝐷𝑖 = 1, 𝑀𝑖1 = 𝑚)

Let 𝜋𝑑𝑚 (𝑘) = ℙ(𝑀𝑖2 = 𝑚 | 𝐷𝑖 = 𝑑, 𝑀𝑖1 = 𝑘). By consistency and then Bayes’ rule, this becomes,∫
x
𝔼{Δ𝑌𝑖 | 𝐷𝑖 = 1, 𝑀𝑖1 = 𝑚,X𝑖 = x, 𝑀𝑖2 = 𝑚}𝑑𝑃(x | 𝐷𝑖 = 1, 𝑀𝑖1 = 0)

=

∫
x
𝔼{Δ𝑌𝑖 | 𝐷𝑖 = 1, 𝑀𝑖1 = 𝑚,X𝑖 = x, 𝑀𝑖2 = 𝑚}

𝜋1𝑚 (𝑚)
𝜋1𝑚 (𝑚, x)

𝑑𝑃(x | 𝐷𝑖 = 1, 𝑀𝑖1 = 𝑚, 𝑀𝑖2 = 𝑚)

Once again applying the law of total probability and then using the definition of conditional proba-

bility, we can simplify this to:

𝔼

{
Δ𝑌𝑖

𝜋1𝑚 (𝑚,X𝑖)

���� 𝐷𝑖 = 1, 𝑀𝑖1 = 𝑚, 𝑀𝑖2 = 𝑚

}
(𝜋1𝑚 (𝑚)) = 𝔼

{
𝑊𝑖1𝑚𝐷𝑖𝑊𝑖2𝑚Δ𝑌𝑖2

𝔼[𝑊𝑖1𝑚]𝔼[𝐷𝑖]𝜋1𝑚 (𝑚,X𝑖)

}
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Thus, we can write the first term in the 𝜏𝑚 (using randomization on the first term):

𝔼{𝑌𝑖2(1, 𝑚) | 𝑀𝑖1 = 𝑚} = 𝔼(𝑌𝑖1(0, 𝑚) | 𝑀𝑖1 = 𝑚) + 𝔼

{
𝑊𝑖1𝑚𝐷𝑖𝑊𝑖2𝑚

𝔼[𝑊𝑖1𝑚]𝔼[𝐷𝑖]𝜋1𝑚 (𝑚,X𝑖)
Δ𝑌𝑖2

}
We now turn to the second term of the 𝜏𝑚 . Again using the law of total probability and Assump-

tion 2, we have:

𝔼{𝑌𝑖2(0, 𝑚) | 𝑀𝑖1 = 𝑚} = 𝔼{𝑌𝑖2(0, 𝑚) | 𝐷𝑖 = 0, 𝑀𝑖1 = 𝑚}

=

∫
x
𝔼{𝑌𝑖2(0, 𝑚) | 𝐷𝑖 = 0, 𝑀𝑖1 = 𝑚,X𝑖 = x}𝑑𝑃(x | 𝐷𝑖 = 1, 𝑀𝑖1 = 0)

= 𝔼(𝑌𝑖1(0, 𝑚) | 𝑀𝑖1 = 𝑚)

+
∫
x
𝔼{𝑌𝑖2(0, 𝑚) − 𝑌𝑖1(0, 𝑚) | 𝐷𝑖 = 0, 𝑀𝑖1 = 𝑚,X𝑖 = x}𝑑𝑃(x | 𝐷𝑖 = 0, 𝑀𝑖1 = 𝑚)

Once again, using the law of total probability and Assumption 2, this term becomes:∫
x
𝔼{𝑌𝑖2(0, 𝑚) − 𝑌𝑖1(0, 𝑚) | 𝐷𝑖 = 0, 𝑀𝑖1 = 𝑚,X𝑖 = x, 𝑀𝑖2 = 𝑚}𝑑𝑃(x | 𝐷𝑖 = 0, 𝑀𝑖1 = 𝑚)∫

x
𝔼{Δ𝑌𝑖 | 𝐷𝑖 = 0, 𝑀𝑖1 = 𝑚,X𝑖 = x, 𝑀𝑖2 = 𝑚}𝑑𝑃(x | 𝐷𝑖 = 0, 𝑀𝑖1 = 𝑚)

=

∫
x
𝔼{Δ𝑌𝑖 | 𝐷𝑖 = 0, 𝑀𝑖1 = 𝑚,X𝑖 = x, 𝑀𝑖2 = 𝑚}

𝜋0𝑚(𝑚)
𝜋0𝑚(𝑚, x)

𝑑𝑃(x | 𝐷𝑖 = 0, 𝑀𝑖1 = 𝑚, 𝑀𝑖2 = 𝑚)

Finally, using the law of total probability and the definition of conditional expectation, we can

write this term as:

𝔼

{
Δ𝑌𝑖

𝔼[𝑊𝑖1𝑚] (1 − 𝔼[𝐷𝑖])𝜋0𝑚 (𝑚,X𝑖)

���� 𝐷𝑖 = 0, 𝑀𝑖1 = 𝑚, 𝑀𝑖2 = 𝑚

}
𝜋0𝑚 (𝑚))

= 𝔼

{
𝑊𝑖1𝑚 (1 − 𝐷𝑖)𝑊𝑖2𝑚

𝔼[𝑊𝑖1𝑚] (1 − 𝔼[𝐷𝑖])𝜋0𝑚 (𝑚,X𝑖)
Δ𝑌𝑖2

}
Combining this with the results on the first term gives the desired result for 𝜏𝑚 .

For the regression identification formulas, note that under our assumptions we have

𝜇𝑑𝑚 (𝑚,X𝑖,Z𝑖) = 𝔼[Δ𝑌𝑖 (𝑑, 𝑚) | 𝑀𝑖1 = 𝑚, 𝐷𝑖 = 𝑑,X𝑖,Z𝑖],

and so by iterated expectations,

𝜈𝑑𝑚 (𝑚,X𝑖) = 𝔼[Δ𝑌𝑖 (𝑑, 𝑚) | 𝑀𝑖1 = 𝑚, 𝐷𝑖 = 𝑑] .

Then by randomization of 𝐷𝑖 and the definition of conditional expectation, we have

𝜏𝑚 = 𝔼

[
𝑊𝑖1𝑚

𝔼[𝑊𝑖1𝑚]
(𝜈1𝑚 (𝑚,X𝑖) − 𝜈0𝑚 (𝑚,X𝑖))

]
.
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B.2 Multiple robustness

In this section we give a proof for 1, which also will establish the multiple robustness property of the

multiply robust identification results in the main text.

Proof of Theorem 1. We write 𝜓𝑖,𝑚 = 𝜓𝑖,𝑚,1 − 𝜓𝑖,𝑚,0, where

𝜓𝑖,𝑚,1(𝜋𝑑𝑚, 𝜇𝑑𝑚, 𝜈𝑑𝑚) =
(

𝑊𝑖1𝑚𝐷𝑖𝑊𝑖2𝑚

𝑊1𝑚𝐷𝜋1𝑚 (𝑚,X𝑖,Z𝑖)

)
(Δ𝑌𝑖 − 𝜇1𝑚 (𝑚,X𝑖,Z𝑖))

+ 𝑊𝑖1𝑚𝐷𝑖

𝑊1𝑚𝐷
(𝜇1𝑚 (𝑚,X𝑖,Z𝑖) − 𝜈1𝑚 (𝑚,X𝑖)) +

𝑊𝑖1𝑚

𝑊1𝑚
𝜈1𝑚 (𝑚,X𝑖)

𝜓𝑖,𝑚,0(𝜋𝑑𝑚, 𝜇𝑑𝑚, 𝜈𝑑𝑚) =
(

𝑊𝑖1𝑚 (1 − 𝐷𝑖)𝑊𝑖2𝑚

𝑊1𝑚 (1 − 𝐷)𝜋0𝑚 (𝑚,X𝑖,Z𝑖)

)
(Δ𝑌𝑖 − 𝜇0𝑚 (𝑚,X𝑖,Z𝑖))

+ 𝑊𝑖1𝑚 (1 − 𝐷𝑖)
𝑊1𝑚 (1 − 𝐷)

(𝜇0𝑚 (𝑚,X𝑖,Z𝑖) − 𝜈0𝑚 (𝑚,X𝑖)) +
𝑊𝑖1𝑚

𝑊1𝑚
𝜈0𝑚 (𝑚,X𝑖).

We demonstrate the double robustness result on the first expression 𝜓𝑖,𝑚,1 and the corresponding

result for 𝜓𝑖,𝑚,0 following similarly. The goal is to show that 𝑁−1 ∑𝑁
𝑖=1 𝜓𝑖,𝑚,1(�̂�𝑑𝑚, 𝜇𝑑𝑚, �̂�𝑑𝑚)

𝑝
→

𝔼[Δ𝑌𝑖 (1, 𝑚) | 𝑀𝑖1 = 𝑚] under the cases described in the Theorem. We first consider the case

where the propensity score model is correctly specified, so that

�̂�𝑑𝑚 (𝑘, x, z)
𝑝
→ 𝜋𝑑𝑚 (𝑘, x, z),

𝜇1𝑚 (𝑘, x, z)
𝑝
→ 𝜇∗1𝑚 (𝑘, x, z),

�̂�1𝑚 (𝑘, x)
𝑝
→ 𝜈∗1𝑚 (𝑘, x),

where 𝜇∗1𝑚 and 𝜈∗1𝑚 are functions that do not necessarily correspond to 𝜇1𝑚 and 𝜈1𝑚 . Then by Slut-

sky’s Theorem, we can write 1
𝑁

∑𝑁
𝑖=1 𝜓1𝑚 (�̂�𝑑𝑚, 𝜇𝑑𝑚, �̂�𝑑𝑚) as

𝔼

{(
𝑊𝑖1𝑚𝐷𝑖𝑊𝑖2𝑚

𝔼[𝑊𝑖1𝑚]𝔼[𝐷𝑖]𝜋𝑖,1𝑚 (𝑚,X𝑖,Z𝑖)

) (
Δ𝑌𝑖 − 𝜇∗1𝑚 (𝑚,X𝑖,Z𝑖)

)}
+ 𝔼

{
𝑊𝑖1𝑚𝐷𝑖

𝔼[𝑊𝑖1𝑚]𝔼[𝐷𝑖]
(
𝜇∗1𝑚 (𝑚,X𝑖,Z𝑖) − 𝜈∗1𝑚 (𝑚,X𝑖)

)}
+ 𝔼

{
𝑊𝑖1𝑚

𝔼[𝑊𝑖1𝑚]
𝜈∗1𝑚 (𝑚,X𝑖)

}
+ 𝑜𝑝 (1)

= 𝔼

{(
𝑊𝑖1𝑚𝐷𝑖

𝔼[𝑊𝑖1𝑚]𝔼[𝐷𝑖]

) (
𝜇1𝑚 (𝑚,X𝑖,Z𝑖) − 𝜇∗1𝑚 (𝑚,X𝑖,Z𝑖)

)}
+ 𝔼

{
𝑊𝑖1𝑚𝐷𝑖

𝔼[𝑊𝑖1𝑚]𝔼[𝐷𝑖]
(
𝜇∗1𝑚 (𝑚,X𝑖,Z𝑖) − 𝜈∗1𝑚 (𝑚,X𝑖)

)}
+ 𝔼

{
𝑊𝑖1𝑚

𝔼[𝑊𝑖1𝑚]
𝜈∗1𝑚 (𝑚,X𝑖)

}
+ 𝑜𝑝 (1)

= 𝔼

{
𝑊𝑖1𝑚

𝔼[𝑊𝑖1𝑚]
𝜇1𝑚 (𝑚,X𝑖,Z𝑖)

}
+ 𝑜𝑝 (1) = 𝔼[Δ𝑌𝑖 (1, 𝑚) | 𝑀𝑖1 = 𝑚] + 𝑜𝑝 (1)
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The first equality follows from iterated expectations and the definition of 𝜋𝑖2𝑚 , the second by ran-

domization of 𝐷𝑖 and the last by the fact that

𝜇𝑑𝑚 (𝑘,X𝑖,Z𝑖) = 𝔼[Δ𝑌𝑖 (𝑑, 𝑚) | 𝑀𝑖1 = 𝑘,X𝑖,Z𝑖],

and the definition of conditional expectation. This, combined with the equivalent result for 𝜓𝑖,𝑚,0,

establishes consistency when the propensity score model is correct. Note that this also establishes

the identification formula of 𝜏𝑚 = 𝔼[𝜓𝑖,𝑚] when the propensity score is correctly specified.

Now we turn to the setting where the outcome regressions are correctly specified so that

�̂�𝑑𝑚 (𝑘, x, z)
𝑝
→ 𝜋∗𝑑𝑚 (𝑘, x, z),

𝜇1𝑚 (𝑘, x, z)
𝑝
→ 𝜇1𝑚 (𝑘, x, z),

�̂�1𝑚 (𝑘, x)
𝑝
→ 𝜈1𝑚 (𝑘, x).

With these, we can write 1
𝑁

∑𝑁
𝑖=1 𝜓1𝑚 (�̂�𝑑𝑚, 𝜇𝑑𝑚, �̂�𝑑𝑚) as

𝔼

{(
𝑊𝑖1𝑚𝐷𝑖𝑊𝑖2𝑚

𝔼[𝑊𝑖1𝑚]𝔼[𝐷𝑖]𝜋∗𝑖,1𝑚 (𝑚,X𝑖,Z𝑖)

)
(Δ𝑌𝑖 − 𝜇1𝑚 (𝑚,X𝑖,Z𝑖))

}
+ 𝔼

{
𝑊𝑖1𝑚𝐷𝑖

𝔼[𝑊𝑖1𝑚]𝔼[𝐷𝑖]
(𝜇1𝑚 (𝑚,X𝑖,Z𝑖) − 𝜈1𝑚 (𝑚,X𝑖))

}
+ 𝔼

{
𝑊𝑖1𝑚

𝔼[𝑊𝑖1𝑚]
𝜈1𝑚 (𝑚,X𝑖)

}
+ 𝑜𝑝 (1)

= 𝔼

{(
𝑊𝑖1𝑚𝐷𝑖𝑊𝑖2𝑚

𝔼[𝑊𝑖1𝑚]𝔼[𝐷𝑖]𝜋∗𝑖,1𝑚 (𝑚,X𝑖,Z𝑖)

)
(𝜇1𝑚 (𝑚,X𝑖,Z𝑖) − 𝜇1𝑚 (𝑚,X𝑖,Z𝑖))

}
+ 𝔼

{
𝑊𝑖1𝑚𝐷𝑖

𝔼[𝑊𝑖1𝑚]𝔼[𝐷𝑖]
(𝜇1𝑚 (𝑚,X𝑖,Z𝑖) − 𝜈1𝑚 (𝑚,X𝑖))

}
+ 𝔼

{
𝑊𝑖1𝑚

𝔼[𝑊𝑖1𝑚]
𝜈1𝑚 (𝑚,X𝑖)

}
+ 𝑜𝑝 (1)

= 𝔼

{
𝑊𝑖1𝑚𝐷𝑖

𝔼[𝑊𝑖1𝑚]𝔼[𝐷𝑖]
(𝜇1𝑚 (𝑚,X𝑖,Z𝑖) − 𝜈1𝑚 (𝑚,X𝑖))

}
+ 𝔼

{
𝑊𝑖1𝑚

𝔼[𝑊𝑖1𝑚]
𝜈1𝑚 (𝑚,X𝑖)

}
+ 𝑜𝑝 (1)

= 𝔼

{
𝑊𝑖1𝑚

𝔼[𝑊𝑖1𝑚]
𝜇1𝑚 (𝑚,X𝑖,Z𝑖)

}
+ 𝑜𝑝 (1) = 𝔼[Δ𝑌𝑖 (1, 𝑚) | 𝑀𝑖1 = 𝑚] + 𝑜𝑝 (1)

This, combined with the equivalent result for 𝜓𝑖,𝑚,0, establishes consistency when the outcome re-

gressions are correct. Note that this also establishes the identification formula of 𝜏𝑚 = 𝔼[𝜓𝑖,𝑚] when

the outcome regressions are correctly specified. The result for 𝛾𝑚 also follows similarly.

□
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B.3 Efficient influence function

Here we show that the influence functions for our multiply robust estimators are (uncentered) ver-

sions of the efficient influence functions (EIFs) for our target parameters. EIFs are important to non-

parametric and semiparametric estimators because the variance of the efficient influence function

serves as a lower bound for the mean squared error of any estimator across any distribution con-

sistent with the identification assumptions. This is a form of “minimax” lower bound: no estimator

can achieve a lower worst-case mean square error than this bound. If our estimators have that same

influence function, then we hope that these estimators will obtain this bound, at least asymptotically.

We now show that once we center the influence functions for our identification results, we obtain

the EIFs and the semiparametric efficiency bounds.

Let 𝜼 be the vector of nuisance functions for each estimator, so 𝜼 = (𝜋𝑑𝑚, 𝜇𝑑𝑚, 𝜈𝑑𝑚) for 𝜏𝑚 and

𝜼 = (𝜋𝑑𝑚, 𝜇𝑑𝑚) for 𝛾𝑚 . Then, we rewrite 𝜓𝑖𝑚 (𝜼) = 𝜓𝑚 (O𝑖 ; 𝜼) to emphasize the dependence on the

observed data. Furthermore, let 𝑝𝑑 = 𝔼[𝐷𝑖] and 𝑝𝑚 = 𝔼[𝑊𝑖1𝑚].

Theorem3. (a) Under Assumptions 1 and 2 and suitable regularity conditions, the efficient influence func-

tion for 𝜏𝑚 is 𝜓𝑚 (O𝑖 ; 𝜼) = 𝜓𝑚 (O𝑖 ; 𝜼) − (𝑊𝑖1𝑚/𝔼[𝑊𝑖1,])𝜏𝑚 , and the semiparametric efficiency bound is

𝔼[𝜓𝑚 (O𝑖 ; 𝜼)2]. (b) Under Assumptions 1 and 3 and suitable regularity conditions, the efficient influence

function for 𝛾𝑚 is 𝜙𝑚 (O𝑖 ; 𝜼) = 𝜙𝑚 (O𝑖 ; 𝜼) − (𝑊𝑖1𝑚𝐷𝑖𝑊𝑖2𝑚/𝔼[𝑊𝑖1𝑚𝐷𝑖𝑊𝑖2𝑚])𝛾𝑚 , and the semiparamet-

ric efficiency bound is 𝔼[𝜙𝑚 (O𝑖 ; 𝜼)2].

The regularity conditions here involve technical requirements to ensure pathwise differentiability

of the efficient influence function. See, for example, Bickel et al. (1998, Chapter 3 3) for more details

on these conditions.

Proof of Theorem 3. Define the collection of potential outcomes in each period asY𝑖2(•) = {𝑌𝑖2(0, 𝑚), 𝑌𝑖2(1, 𝑚)}𝑚∈M
and Y𝑖1(•) = {𝑌𝑖1(0, 𝑚)}𝑚∈M with representative values y2(•) and y1(•), respectively. Then the full

data is given by

H𝑖 = (Y𝑖2(•),Y𝑖1(•), 𝑀𝑖2,Z𝑖, 𝐷𝑖,X𝑖, 𝑀𝑖1) ,
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and let h be a possible value of H. Then the density of H for some sigma-finite measure is

𝑞(h) =
∏
𝑚2∈M

∏
𝑚1∈M

𝑓 (y2(·), y1(·) | 𝑚2, 𝐷𝑖 = 1, 𝑚1, z, x)𝑤𝑚2𝑑𝑤𝑚1

× 𝑓 (y2(·), y1(·) | 𝑚2, 𝐷𝑖 = 0, 𝑚1, z, x)𝑤𝑚2 (1−𝑑)𝑤𝑚1

×𝜋1𝑚2 (𝑚1, z, x)𝑤𝑚2𝑑𝑤𝑚1𝜋0𝑚2 (𝑚1, z, x)𝑤𝑚2 (1−𝑑)𝑤𝑚1

× 𝑓 (z | 𝐷𝑖 = 1, 𝑚1, x)𝑑𝑤𝑚1 𝑓 (z | 𝐷𝑖 = 0, 𝑚1, x) (1−𝑑)𝑤𝑚1

× 𝑓 (x | 𝑚1)𝑤𝑚1 𝑝𝑑𝑑 (1 − 𝑝𝑑)
(1−𝑑) 𝑝

𝑤𝑚1
𝑚1

,

where 𝑤𝑚1 is 1 when 𝑀𝑖1 = 𝑚1 and 0 otherwise, with 𝑤𝑚2 defined similarly. In addition to the

propensity scores that have already been defined, this density contains the following:

• 𝑓 (y2(·), y1(·) | 𝑚2, 𝐷𝑖 = 𝑑, 𝑚1, z, x) is the density of the potential outcomes conditional on

𝑀𝑖2 = 𝑚2, 𝐷𝑖 = 𝑑, 𝑀𝑖1 = 𝑚1, Z𝑖 = z, and X𝑖 = x, where 𝑚1, 𝑚2 ∈ M , 𝑑 ∈ {0, 1}, z ∈ ℝ𝑘𝑧 ,

and x ∈ ℝ𝑘𝑥 .

• 𝑓 (z | 𝐷𝑖 = 𝑑, 𝑚1, x) is the density of Z𝑖 conditional on 𝐷𝑖 = 𝑑, X𝑖 = x, and 𝑀𝑖1 = 𝑚1.

• 𝑓 (x | 𝑚1) is the density of X𝑖 conditional on 𝑀𝑖1 = 𝑚1.

We now the turn to the density of the observed data, O𝑖 = (𝑌𝑖2, 𝑌𝑖1, 𝑀𝑖2,Z𝑖, 𝐷𝑖,X𝑖, 𝑀𝑖1). We write

the density of the observed outcomes as

𝑓 (𝑦2, 𝑦1 | 𝑚2, 1, 𝑚1, z, x),

which marginalizes the 𝑓 (·) over the potential outcomes where 𝐷𝑖 ≠ 1, 𝑀𝑖2 ≠ 𝑚2, or 𝑀𝑖1 ≠ 𝑚1.

Consider a possible value of the observed data

o = (𝑦2, 𝑦1, 𝑗2, 𝑑, 𝑗1, 𝑧, 𝑥)′

The density of the observed dataO𝑖 can be written as

𝑞(o; 𝜃) =
∏
𝑚2∈M

∏
𝑚1∈M

[
𝑓 (𝑦2, 𝑦1 | 𝑚2, 1, 𝑚1, z, x)𝜋1𝑚2 (𝑚1, z, x)

]𝑑1(𝑚2= 𝑗2,𝑚1= 𝑗1)

×
[
𝑓 (𝑦2, 𝑦1 | 𝑚2, 0, 𝑚1, z, x)𝜋0𝑚2 (𝑚1, z, x)

] (1−𝑑)1(𝑚2= 𝑗2,𝑚1= 𝑗1)

×
[
𝑓 (z | 𝐷𝑖 = 1, 𝑚1, x)𝑑 𝑓 (z | 𝐷𝑖 = 0, 𝑚1, x) (1−𝑑)

]1(𝑚1= 𝑗1)

× 𝑓 (x | 𝑚1)1(𝑚1= 𝑗1) 𝑝𝑑𝑑 (1 − 𝑝𝑑)
(1−𝑑) 𝑝1(𝑚1= 𝑗1)

𝑚1 .

41



We consider a regular parametric submodel for the joint distribution ofO𝑖 , with log likelihood

log 𝑞(o; 𝜃) =∑︁
𝑚2∈M

∑︁
𝑚1∈M

[
𝑑1(𝑚2 = 𝑗2, 𝑚1 = 𝑗1)

(
log 𝑓 (𝑦2, 𝑦1 | 𝑚2, 1, 𝑚1, z, x; 𝜃) + log 𝜋1𝑚2 (𝑚1, z, x; 𝜃)

)
+ (1 − 𝑑)1(𝑚2 = 𝑗2, 𝑚1 = 𝑗1)

(
log 𝑓 (𝑦2, 𝑦1 | 𝑚2, 0, 𝑚1, z, x; 𝜃) + log 𝜋0𝑚2 (𝑚1, z, x; 𝜃)

) ]
+

∑︁
𝑚1∈M

1(𝑚1 = 𝑗1) (𝑑 log 𝑓 (z | 1, 𝑚1, x; 𝜃) + (1 − 𝑑) log 𝑓 (z | 0, 𝑚1, x; 𝜃) + log 𝑓 (𝑥 | 𝑚1; 𝜃))

where, 𝑞(·; 𝜃0) = 𝑞(·) so that 𝜃0 is the true value of the parameters. This parametric submodel yields

the following score:

𝑆(o; 𝜃) = 𝑆𝑦 (𝑦2, 𝑦1, 𝑗2, 𝑠, 𝑗1, z, x; 𝜃) + 𝑆𝑚 ( 𝑗2, 𝑠, 𝑗1, z, x; 𝜃) + 𝑆𝑧 (z, 𝑗1, 𝑠, x; 𝜃) + 𝑆𝑥 (x, 𝑗1; 𝜃)

where,

𝑆𝑦 (𝑦2, 𝑦1, 𝑗2, 𝑠, 𝑗1, z, x; 𝜃) =
∑︁
𝑚1∈M

∑︁
𝑑∈{0,1}

∑︁
𝑚2∈M

1 (𝑚1 = 𝑗1, 𝑑 = 𝑠, 𝑚2 = 𝑗2)
𝑑

𝑑𝜃
log 𝑓 (𝑦2, 𝑦1 | 𝑚2, 𝑑, 𝑚1, z, x; 𝜃)

𝑆𝑚 ( 𝑗2, 𝑠, 𝑗1, z, x; 𝜃) =
∑︁
𝑚1∈M

∑︁
𝑑∈{0,1}

∑︁
𝑚2∈M

1 (𝑚1 = 𝑗1, 𝑑 = 𝑠, 𝑚2 = 𝑗2)
¤𝜋𝑑𝑚2 (𝑚1, z, x; 𝜃)
𝜋𝑑𝑚2 (𝑚1, z, x; 𝜃)

𝑆𝑧 (z, 𝑠, 𝑗1, x; 𝜃) =
∑︁
𝑚1∈M

∑︁
𝑑∈{0,1}

1 (𝑚1 = 𝑗1, 𝑑 = 𝑠) 𝑑
𝑑𝜃

log 𝑓 (z | 𝑑, 𝑚1, x; 𝜃)

𝑆𝑥 (x, 𝑗1; 𝜃) =
∑︁
𝑚1∈M

1(𝑚1 = 𝑗1)
𝑑

𝑑𝜃
log 𝑓 (x | 𝑚1; 𝜃)

Let 𝐿20(𝐹𝑊 ) be the usual Hilbert space of zero-mean, square-integrable functions with respect to

the distribution 𝐹𝑊 . The tangent space of the model isH = H𝑦 + H𝑚 + H𝑧 + H𝑥 , where

H𝑦 = {𝑆𝑦 (𝑌𝑖2, 𝑌𝑖1, 𝑀𝑖2, 𝐷𝑖, 𝑀𝑖1,Z𝑖,X𝑖) : 𝑆𝑦 (𝑌𝑖2, 𝑌𝑖1, 𝑀𝑖2, 𝐷𝑖, 𝑀𝑖1,Z𝑖,X𝑖) ∈ 𝐿20(𝐹𝑌2,𝑌1 |𝑀2,𝐷,𝑀1,Z,X)}

H𝑚 = {𝑆𝑚 (𝑀𝑖2, 𝐷𝑖, 𝑀𝑖1,Z𝑖,X𝑖) : 𝑆𝑚 (𝑀𝑖2, 𝐷𝑖, 𝑀𝑖1,Z𝑖,X𝑖) ∈ 𝐿20(𝐹𝑀2 |𝐷,𝑀1,Z,X)}

H𝑧 = {𝑆𝑧 (Z𝑖, 𝐷𝑖, 𝑀𝑖1,X𝑖) : 𝑆𝑧 (Z𝑖, 𝐷𝑖, 𝑀𝑖1,X𝑖) ∈ 𝐿20(𝐹Z|𝐷,𝑀1,X)}

H𝑥 = {𝑆𝑥 (X𝑖, 𝑀𝑖1) : 𝑆𝑥 (X𝑖, 𝑀𝑖1) ∈ 𝐿20(𝐹X|𝑀1)},

The further restrictions on the tangent space are thatwe have𝔼[𝑆𝑚 (𝑀𝑖2, 𝐷𝑖, 𝑀𝑖1,Z𝑖,X𝑖) | 𝐷𝑖, 𝑀𝑖1,Z𝑖,X𝑖] =∑
𝑚2∈M ¤𝜋𝐷𝑖 ,𝑚2 (𝑀𝑖1,Z𝑖,X𝑖) and

𝔼[𝑆𝑚 (𝑀𝑖2, 𝐷𝑖, 𝑀𝑖1,Z𝑖,X𝑖)2 | 𝐷𝑖, 𝑀𝑖1,Z𝑖,X𝑖] =
∑︁
𝑚2∈M

¤𝜋𝐷𝑖𝑚2 (𝑀𝑖1,Z𝑖,X𝑖)2/𝜋𝐷𝑖𝑚2 (𝑀𝑖1,Z𝑖,X𝑖).

42



We can write the ACDE as a function of the regular parametric submodel as

𝜏𝑚 (𝜃) =
∫
x

∫
z

∫
𝑦1,𝑦2

(𝑦2 − 𝑦1) 𝑓 (𝑦2, 𝑦1 | 𝑚, 1, 𝑚, z, x; 𝜃) 𝑓 (z | 1, 𝑚, x; 𝜃) 𝑓 (x | 𝑚; 𝜃)𝑑𝑦2𝑑𝑦2𝑑z𝑑x

−
∫
x

∫
z

∫
𝑦1,𝑦2

(𝑦2 − 𝑦1) 𝑓 (𝑦2, 𝑦1 | 𝑚, 0, 𝑚, z, x; 𝜃) 𝑓 (z | 0, 𝑚, x; 𝜃) 𝑓 (x | 𝑚; 𝜃)𝑑𝑦2𝑑𝑦2𝑑z𝑑x,

where 𝜏𝑚 (𝜃0) = 𝜏𝑚 .

Our proposed influence functionwill be the efficient influence function if it is in the tangent space

H and meets the following condition:

𝜕𝜏𝑚 (𝜃0)
𝜕𝜃

= 𝔼
[
𝜓𝑚 (O𝑖 ; 𝜼0)𝑆(O𝑖 ; 𝜃0)

]
.

We can derive the pathwise derivative as

𝜕𝜏𝑚 (𝜃0)
𝜕𝜃

=

∫
x

∫
z

∫
𝑦1,𝑦2

[
(𝑦2 − 𝑦1)𝑆(𝑦2, 𝑦1 | 𝑚, 1, 𝑚, z, x) 𝑓 (𝑦2, 𝑦1 | 𝑚, 1, 𝑚, z, x) 𝑓 (z | 1, 𝑚, x)

× 𝑓 (x | 𝑚)𝑑𝑦2𝑑𝑦2𝑑z𝑑x
]

+
∫
x

∫
z

∫
𝑦1,𝑦2

[
(𝑦2 − 𝑦1)𝑆(𝑦2, 𝑦1 | 𝑚, 0, 𝑚, z, x) 𝑓 (𝑦2, 𝑦1 | 𝑚, 1, 𝑚, z, x) 𝑓 (z | 0, 𝑚, x)

× 𝑓 (x | 𝑚)𝑑𝑦2𝑑𝑦2𝑑z𝑑x
]

+
∫
x

∫
z
(𝜇1𝑚 (𝑚, z, x) − 𝜈1𝑚 (𝑚, x))𝑆(z | 1, 𝑚, x) 𝑓 (z | 1, 𝑚, x) 𝑓 (x | 𝑚)𝑑z𝑑x

+
∫
x

∫
z
(𝜇0𝑚 (𝑚, z, x) − 𝜈0𝑚 (𝑚, x))𝑆(z | 0, 𝑚, x) 𝑓 (z | 0, 𝑚, x) 𝑓 (x | 𝑚)𝑑z𝑑x

+
∫
x
(𝜈1𝑚 (𝑚, x) − 𝜈0𝑚 (𝑚, x) − 𝜏𝑚)𝑆(x | 𝑚) 𝑓 (x | 𝑚)𝑑x,

Upon inspection, 𝜓𝑚 (O𝑖 ; 𝜼0) satisfies the condition and is inH . Thus, by Theorem 3.1 of Newey

(1990), 𝜓𝑚 (O𝑖 ; 𝜼0) is the efficient influence function for 𝜏𝑚 and the latter is a pathwise differentiable

parameter. This also implies that the semiparametric efficiency bound is 𝔼[𝜓𝑚 (O𝑖 ; 𝜼0)2].

For our other estimand, note that

𝛾𝑚 = 𝔼 [𝔼 [Δ𝑌𝑖 | 𝑀𝑖1 = 𝑚, 𝐷𝑖 = 1, 𝑀𝑖2 = 𝑚, 𝑋𝑖]

− 𝔼 [Δ𝑌𝑖 | 𝑀𝑖1 = 𝑚, 𝐷𝑖 = 1, 𝑀𝑖2 = 𝑚, 𝑋𝑖] | 𝑀𝑖1 = 𝑚, 𝐷𝑖 = 1, 𝑀𝑖2 = 𝑚]
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Thus, under the regular parametric submodel, we can write this as

𝛾𝑚 (𝜃) =

∫
x

∫
𝑦1,𝑦2

(𝑦2 − 𝑦1) 𝑓 (𝑦2, 𝑦1 | 𝑚, 1, 𝑚, x; 𝜃)𝜋1𝑚 (𝑚, x; 𝜃) 𝑓 (x | 𝑚; 𝜃)𝑑𝑦1𝑑𝑦2𝑑x∫
x 𝜋1𝑚 (𝑚, x; 𝜃) 𝑓 (x | 𝑚; 𝜃)

−

∫
x

∫
𝑦1,𝑦2

(𝑦2 − 𝑦1) 𝑓 (𝑦2, 𝑦1 | 𝑚, 0, 𝑚, x; 𝜃)𝜋1𝑚 (𝑚, x; 𝜃) 𝑓 (x | 𝑚; 𝜃)𝑑𝑦1𝑑𝑦2𝑑x∫
𝑥
𝜋1𝑚 (𝑚, x; 𝜃) 𝑓 (x | 𝑚; 𝜃)

Thus,

𝜕𝛾𝑚 (𝜃0)
𝜕𝜃

=

∫
x

∫
𝑦1,𝑦2

(𝑦2 − 𝑦1)𝑆(𝑦2, 𝑦1 | 𝑚, 1, 𝑚, x) 𝑓 (𝑦2, 𝑦1 | 𝑚, 1, 𝑚, x)𝜋2𝑚 (𝑚, 1, x) 𝑓 (x | 𝑚)𝑑𝑦1𝑑𝑦2𝑑x
𝔼[𝑊𝑖1𝑚𝐷𝑖𝑊𝑖2𝑚]/𝑝𝑑 𝑝𝑚

−

∫
x

∫
𝑦1,𝑦2

(𝑦2 − 𝑦1)𝑆(𝑦2, 𝑦1 | 𝑚, 0, 𝑚, x) 𝑓 (𝑦2, 𝑦1 | 𝑚, 0, 𝑚, x)𝜋2𝑚 (𝑚, 1, x) 𝑓 (x | 𝑚)𝑑𝑦1𝑑𝑦2𝑑x
𝔼[𝑊𝑖1𝑚𝐷𝑖𝑊𝑖2𝑚]/𝑝𝑑 𝑝𝑚

+
∫
x (𝜇1𝑚 (𝑚, 1, 𝑚, x) − 𝜇0𝑚 (𝑚, 0, 𝑚, x) − 𝛾𝑚) ¤𝜋2(𝑚 | 1, 𝑚, x) 𝑓 (x | 𝑚)𝑑x

𝔼[𝑊𝑖1𝑚𝐷𝑖𝑊𝑖2𝑚]/𝑝𝑑 𝑝𝑚

+
∫
x (𝜇1𝑚 (𝑚, 1, 𝑚, x) − 𝜇0𝑚 (𝑚, 0, 𝑚, x) − 𝛾𝑚) 𝜋2𝑚 (1, 𝑚, x)𝑆(x | 𝑚) 𝑓 (x | 𝑚)𝑑x

𝔼[𝑊𝑖1𝑚𝐷𝑖𝑊𝑖2𝑚]/𝑝𝑑 𝑝𝑚
To verify that it is inH , we can rewrite 𝜙𝑚 (O𝑖 ; 𝜼) as

𝜙𝑚 (O𝑖 ; 𝜼) =
(
𝑊𝑖1𝑚𝐷𝑖𝑊𝑖2𝑚

𝔼[𝑊𝑖1𝑚𝐷𝑖𝑊𝑖2𝑚]

)
(Δ𝑌𝑖 − 𝜇1𝑚 (𝑚,X𝑖))

−
(
𝑊𝑖1𝑚 (1 − 𝐷𝑖)𝑊𝑖2𝑚

𝔼[𝑊𝑖1𝑚𝐷𝑖𝑊𝑖2𝑚]

) (
𝜋2𝑚 (1, 𝑚,X𝑖)𝑝𝑑

𝜋2𝑚 (0, 𝑚,X𝑖) (1 − 𝑝𝑑)

) (
Δ𝑌𝑖 − 𝜇𝑖,0𝑚

)
+ 𝑊𝑖1𝑚𝐷𝑖

𝔼[𝑊𝑖1𝑚𝐷𝑖𝑊𝑖2𝑚]
(𝑊𝑖2𝑚 − 𝜋1𝑚 (𝑚,X𝑖)) (𝜇1𝑚 (𝑚,X𝑖) − 𝜇0𝑚 (𝑚,X𝑖) − 𝛾𝑚)

+ 𝑊𝑖1𝑚𝐷𝑖

𝔼[𝑊𝑖1𝑚𝐷𝑖𝑊𝑖2𝑚]
𝜋1𝑚 (𝑚,X𝑖) (𝜇1𝑚 (𝑚,X𝑖) − 𝜇0𝑚 (𝑚,X𝑖) − 𝛾𝑚) .

From there, it is straightforward to verify that

𝜕𝛾𝑚 (𝜃0)
𝜕𝜃

= 𝔼
[
𝜙𝑚 (O𝑖 ; 𝜼0)𝑆(O𝑖 ; 𝜃0)

]
.

Thus it is the efficient influence function for 𝛾𝑚 and the semiparametric efficiency bound is𝔼[𝜙𝑚 (O𝑖 ; 𝜼0)2].

□

B.4 Asymptotic distribution of the cross-fitting estimator

We now provide more technical details and results for the cross-fitting estimator. Let 𝜓𝑚 (O𝑖, �̂�−𝑏)

be the value of the influence function when the nuisance parameters are estimated without the group
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𝐵𝑖 = 𝑏. We also let ℙ𝑏𝑛 denote the conditional empirical distribution for the group 𝐵𝑖 = 𝑏,

ℙ𝑏𝑛{ 𝑓 (O𝑖)} =
∑
𝑖=1 𝑓 (O𝑖)𝕀(𝐵𝑖 = 𝑏)∑

𝑖=1 𝕀(𝐵𝑖 = 𝑏)

Then, we can define the crossfitting estimator as

�̂�𝑚 =

𝐾∑︁
𝑏=1

{
1
𝑛
𝕀(𝐵𝑖 = 𝑏)

}
ℙ𝑏𝑛{𝜓𝑚 (O𝑖 ; �̂�−𝑏)} = ℙ𝑛

{
𝜓𝑚 (O𝑖 ; �̂�−𝐵𝑖 )

}
,

with �̂�𝑚 defined similarly. Let ∥ 𝑓 ∥ =
(
𝔼[( 𝑓 (O𝑖))2]

)1/2
for any function 𝑓 .

Theorem 4. (a) Let Assumptions 1 and 2 hold and suppose that (i) ∥�̂� − 𝜼∥ = 𝑜𝑝 (1), (ii) ∥𝜇𝑑𝑚 − 𝜇𝑑𝑚 ∥ ×

∥�̂�2𝑚 − 𝜋2𝑚 ∥ = 𝑜𝑝 (𝑛−1/2). Then,
√
𝑁 (�̂�𝑚 − 𝜏𝑚) will converges in distribution to 𝑁 (0,𝔼[𝜓𝑚 (O𝑖 ; 𝜼)2]).

(b) Under the same assumptions with Assumption 3 replacing Assumption 2,
√
𝑁 (�̂�𝑚 − 𝛾𝑚) will converge

in distribution to 𝑁 (0,𝔼[𝜙𝑚 (O𝑖 ; 𝜼)2]).

The following lemma is from the Supplemental Materials for Kennedy, Balakrishnan and G’Sell

(2020) and follows from an application of Chebyshev’s inequality.

Lemma SM.1. Let �̂� (o) be a function estimated from a sample O−𝑏 = {O𝑖 : 𝐵𝑖 ≠ 𝑏} and let ℙ𝑏𝑛 be the

empirical measure over O𝑏 = {O𝑖 : 𝐵𝑖 = 𝑏}, which is independent of O−𝑏 . Then,

(ℙ𝑏𝑛 − ℙ) ( �̂� − 𝑓 ) = 𝑂ℙ

©­­«



 �̂� − 𝑓





√
𝑛

ª®®¬
Here we describe the regularity conditions that are required to prove Theorem 4.

Assumption 4 (Regularity conditions). We assume that (a) ℙ[𝜖1 ≤ �̂�1𝑚 ≤ 1 − 𝜖1] = 1, ℙ[𝜖𝑑 ≤ �̂�𝑑 ≤

1 − 𝜖𝑑] = 1, and ℙ[𝜖2 ≤ �̂�𝑖,2𝑚 ≤ 1 − 𝜖2] = 1 for some values of 𝜖1, 𝜖𝑑 , 𝜖2 > 0; (b) ∥𝑌𝑖𝑡 ∥𝑞 ≤ 𝐶𝑦 ,

𝜇𝑖,𝑑𝑚


𝑞
≤ 𝐶𝜇, and



𝜈𝑖,𝑑𝑚


𝑞
≤ 𝐶𝜈 for some fixed strictly positive constants 𝐶𝑦, 𝐶𝜇, 𝐶𝜈 and 𝑞 > 2.

Proof of Theorem 4. Let 𝜓𝑖𝑚 = 𝜓𝑚 (O𝑖 ; 𝜼0) and 𝜓𝑖𝑚,−𝑏 = 𝜓𝑚 (O𝑖 ; �̂�−𝑏). We can write �̂�𝑚 and 𝜏𝑚 as

�̂�𝑚 =

𝐾∑︁
𝑏=1

ℙ𝑛

(
𝜓𝑖𝑚,−𝑏𝟙(𝐵𝑖 = 𝑏)

)
and 𝜏𝑚 = 𝔼[𝜓𝑖𝑚] =

𝐾∑︁
𝑏=1

ℙ {𝜓𝑖𝑚𝟙(𝐵𝑖 = 𝑏)} .
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Thus, we can write the estimation error as

�̂�𝑚−𝜏𝑚 = (ℙ𝑛 − ℙ) 𝜓𝑖𝑚︸          ︷︷          ︸
(I)

+
𝐾∑︁
𝑏=1


(ℙ𝑛 − ℙ)

{
(𝜓𝑖𝑚,−𝑏 − 𝜓𝑖𝑚)𝟙(𝐵𝑖 = 𝑏)

}
︸                                          ︷︷                                          ︸

(II)

+ℙ
{
(𝜓𝑖𝑚,−𝑏 − 𝜓𝑖𝑚)𝟙(𝐵𝑖 = 𝑏)

}
︸                                ︷︷                                ︸

(III)


(9)

We take each of these in turn. First, (I) is the average of 𝑛 iid mean-zero random variables with fi-

nite variance, so can employ the central limit theorem to establish that it will converge in distribution

to 𝑁 (0, 𝕍 [𝜓𝑖𝑚]). Note that 𝕍 [𝜓𝑖𝑚] = 𝔼[𝜓𝑚 (O𝑖 ; 𝜼0)2].

For (II), we write 𝜇𝑖𝑚 = 𝜇𝐷𝑖 ,𝑚 (𝑚,X𝑖,Z𝑖), 𝜈𝑖𝑚 = 𝜈𝐷𝑖 ,𝑚 (𝑚,X𝑖), and 𝜋𝑖𝑚 = 𝜋𝐷𝑖 ,𝑚 (𝑚,X𝑖,Z𝑖). For

notational convenience, we write 𝐴𝑖 = 2𝐷𝑖 − 1 and let 𝐴 = 𝑁−1 ∑𝑁
𝑖=1 and𝑊1𝑚 = 𝑁−1 ∑𝑁

𝑖=1𝑊𝑖1𝑚 .

Furthermore, we use the shorthand that 𝑎𝑏 if 𝑎 ≤ 𝐶𝑏 for some positive constant 𝐶 > 0. Then we

can write


(𝜓𝑖𝑚,−𝑏 − 𝜓𝑖𝑚)
𝟙(𝐵𝑖 = 𝑏)




 ≤



𝜓𝑖𝑚,−𝑏 − 𝜓𝑖𝑚


 ≲ 


𝜓𝑖𝑚 − 𝜓𝑖𝑚





=






 𝑊𝑖1𝑚𝐴𝑖𝑊𝑖2𝑚 (Δ𝑌𝑖 − 𝜇𝑖𝑚)
𝔼[𝑊𝑖1𝑚]𝔼[𝐴𝑖]𝜋𝑖𝑚𝑊1𝑚𝐴�̂�𝑖𝑚

×
{(
𝔼[𝑊𝑖1𝑚] −𝑊1𝑚

)
𝔼[𝐴𝑖]𝜋𝑖𝑚 +𝑊1𝑚

(
𝔼[𝐴𝑖] − 𝐴

)
𝜋𝑖𝑚 +𝑊1𝑚𝐴 (�̂�𝑖𝑚 − 𝜋𝑖𝑚)

}
+ 𝑊𝑖1𝑚𝐴𝑖𝑊𝑖2𝑚

𝑊1𝑚𝐴�̂�𝑖𝑚
(𝜇𝑖𝑚 − 𝜇𝑖𝑚) +

𝑊𝑖1𝑚𝐴𝑖

𝑊1𝑚𝐴
{(𝜇𝑖𝑚 − 𝜇𝑖𝑚) − (�̂�𝑖𝑚 − 𝜈𝑖𝑚)}

+ 𝑊𝑖1𝑚𝐴𝑖 (𝜇𝑖𝑚 − 𝜈𝑖𝑚)
𝑊1𝑚𝐴𝔼[𝑊𝑖1𝑚]𝔼[𝐴𝑖]

+ 𝑊𝑖1𝑚

𝑊1𝑚

{(
�̂�𝑖,1𝑚 − 𝜈𝑖,1𝑚

)
−

(
�̂�𝑖,0𝑚 − 𝜈𝑖,0𝑚

)}
+ 𝑊𝑖1𝑚 (𝜈𝑖,1𝑚 − 𝜈𝑖,0𝑚)

𝑊1𝑚𝔼[𝑊𝑖1𝑚]

(
𝔼[𝑊𝑖1𝑚] −𝑊1𝑚

) 





≲




𝑊1𝑚 − 𝔼[𝑊𝑖1𝑚]



 + 


𝐴 − 𝔼[𝐴𝑖]




 + ∥�̂�𝑖𝑚 − 𝜋𝑖𝑚 ∥ +max
𝑑



𝜇𝑖,𝑑𝑚 − 𝜇𝑖,𝑑𝑚


 +max

𝑑



�̂�𝑖,𝑑𝑚 − 𝜈𝑖,𝑑𝑚


 = 𝑜(1),

where the last result on the first line follows because𝐾 is fixed so𝑁 ≲ 𝑁/𝐾 . The last line follows from

the triangle inequality, the fact that the propensity scores (and their estimates) are bounded away from

zero (per Assumption 4), and combination of the bounded moment conditions from Assumption 4

and Hölder’s inequality. Here we have also used the fact that the estimated and true propensity scores

are bounded away from zero. By Lemma SM.1, the sum involving (II) must be 𝑜ℙ(1/
√
𝑁).
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For (III), we similarly have

|ℙ
{
(𝜓𝑖𝑚,−𝑏 − 𝜓𝑖𝑚)𝟙(𝐵𝑖 = 𝑏)

}
| ≲ |ℙ(𝜓𝑖𝑚,−𝑏 − 𝜓𝑖𝑚) |

=

����ℙ {
𝑊𝑖1𝑚𝐷𝑖

𝑊1𝑚𝐷�̂�𝑖𝑚

(
𝜇𝑖,1𝑚 − 𝜇𝑖,1𝑚

)
(�̂�𝑖𝑚 − 𝜋𝑖𝑚) −

𝑊𝑖1𝑚 (1 − 𝐷𝑖)
𝑊1𝑚𝔼[1 − 𝐷𝑖] �̂�𝑖𝑚

(
𝜇𝑖,0𝑚 − 𝜇𝑖,0𝑚

)
(�̂�𝑖𝑚 − 𝜋𝑖𝑚)

+ 𝑊𝑖1𝑚

𝑊1𝑚𝐷

(
�̂�𝑖,1𝑚 − 𝜈𝑖,1𝑚

) (
𝐷 − 𝔼[𝐷𝑖]

)
− 𝑊𝑖1𝑚

𝑊1𝑚𝔼[1 − 𝐷𝑖]
(
�̂�𝑖,0𝑚 − 𝜈𝑖,0𝑚

) (
𝐷 − 𝔼[𝐷𝑖]

)}����
≲ ∥�̂�𝑖𝑚 − 𝜋𝑖𝑚 ∥

(
max
𝑑



𝜇𝑖,𝑑𝑚 − 𝜇𝑖,𝑑𝑚


) + 


𝐷 − 𝔼[𝐷𝑖]




 (
max
𝑑



�̂�𝑖,𝑑𝑚 − 𝜈𝑖,𝑑𝑚


)

Given that



𝐷 − 𝔼[𝐷𝑖]




 = 𝑂ℙ(1/
√
𝑁), then second term is 𝑜ℙ(1/

√
𝑁) so long asmax𝑑



�̂�𝑖,𝑑𝑚 − 𝜈𝑖,𝑑𝑚


 =

𝑜ℙ(1), which holds by assumption. Furthermore, by assumption the first term is 𝑜ℙ(1/
√
𝑁), so the

sum involving (III) is also 𝑜ℙ(1/
√
𝑁). Thus, we have,

√
𝑁 (�̂�𝑚 − 𝜏𝑚) =

1
√
𝑁

𝑁∑︁
𝑖=1

𝜓𝑖𝑚 + 𝑜ℙ(1),

and combined with the CLT results about (I), the desired result obtains. □
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C Additional Tables for Empirical Application

Table SM.1: List of covariates

Pre-treatment covariates Post-treatment covariates

Trans law support Obama feeling thermometer (Δ)
Registered Democrat Trans tolerance (Δ)
Political ideology Gender norms (Δ)
Religiousity Trans law support (Δ)
Knows trans people
Female
Hispanic
Af.-Am.
Age
Survey in Spanish
Transgender tolerance
Gender norms
Obama feeling thermometer
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