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1 Introduction

Experimental studies are a valuable, if costly, tool for researchers in the social sciences. The some-

times enormous costs of recruiting participants, implementing the treatments, and measuring out-

comes often force researchers to compromise statistical power by keeping their sample sizes small.

Researchers can improve the efficiency of their statistical estimates in the design of their experi-

ment by using tools such as blocking (Fisher, 1935; Imai, King and Stuart, 2008; Pashley and Miratrix,

2022), but these tools are often infeasible because they require covariatemeasurement before random-

ization. Within-subjects designs that measure the outcome pre- and post-treatment can also make

experiments more powerful but require panel data on respondents and can suffer from differential

attrition.

We focus on an overlooked aspect of experimental design that can increase statistical efficiency:

the relative allocation of treatment. The literature on experimental design in statistics has long known

that researchers can achieve higher statistical power by implementing an optimal design known as

the Neyman allocation that assigns more units to treatment arms that have outcomes with higher

variances. Unfortunately, this optimal design is infeasible because it depends on unknown outcome

variances; to address this, scholars have proposed using an initial pilot batch to estimate the opti-

mal Neyman allocation in future batches (Robbins, 1952; Hahn, Hirano and Karlan, 2011). This paper

studies the properties of this design, which we call the batch adaptive Neyman allocation (BANA) de-

sign, and shows how researchers can leverage theNeyman allocation tomake their experimentsmore

efficient, sometimes vastly so.

Our paper makes five contributions to the study of adaptive experimental designs in political

science. First, we derive the finite-sample relative efficiency of the Neyman allocation compared to

the traditional uniform allocation, allowing researchers to understand when the Neyman allocation

is likely to improve their designs. In short, the Neyman allocation will be more efficient when the

outcome is more heteroskedastic across treatment conditions. Second, we extend the BANA de-
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sign in the potential outcome framework beyond the binary treatment setting to allow for multiarm

studies common in the social sciences. Third, we find that BANA performs poorly with rare binary

outcomes and develop a shrinkage estimator for the optimal allocation weights that vastly improves

finite-sample performance. Fourth, we show how to perform inference for this design, using a stan-

dard stratified difference-in-means estimator that is unbiased for the average treatment effect in spite

of the adaptive design. Our inference methods are valid in finite samples and do not rely on asymp-

totic results, which may not be reasonable for many experiments. Finally, through simulations and a

literature review, we show that researchers in the political science could gain up to 15–30% improve-

ments in relatively efficiency in their main batches using the BANA design.

Adaptive experimental designs have been widely used throughout the sciences and are especially

popular in commercial contexts (for a review focused on political science, seeOffer-Westort, Coppock

and Green, 2021). The BANA design differs from common adaptive designs like the multi-armed

bandit (Berry and Fristedt, 1985) in optimizing the efficiency of the experiment rather than attempting

to maximize the average outcome. The latter is often very useful for commercial or medical settings

where researchers might be interested in which ad causes the highest engagement or which drug

produces the best patient outcome. But finding the optimal treatment arm is often less relevant in

the context of social science research, where the precise estimation of causal contrasts is often more

important than identifying the best performing arm. Additionally, we recommend a small number

of batches—usually just two—to make the implementation of the design much simpler than real-

time adaptive designs that update the treatment allocation for each new unit. This allows a broader

application of the design with standard commercial survey administration platforms. Furthermore,

researchers can leverage the small pilot studies they are already running to implement the BANA

design, making its incorporation into experimental design straightforward. Another difference with

the bandit literature is that, as we show below, the batching nature of the design means that we can

use standard estimators for stratified randomized experiments viewing the batches as strata.

The paper proceeds as follows. Section 2 reviews the literature on adaptive experimental designs.
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In Section 3, we describe the basic setting and derive the relative efficiency of the Neyman allocation

compare to the uniform. In Section 4, we introduce the BANA estimator, derive its statistical prop-

erties, and develop a modified version of the approach with binary outcomes. We present simulation

evidence for the usefulness of the design in Section 5. Section 6 presents a meta-analysis of several

recent experimental papers in political science and how much a BANA design, if conducted, might

have improved the efficiency of the experiment. Finally, in Section 7, we provide practical advice

on using adaptive designs for social scientists, and in Section 8, we end with directions for future

research.

2 A Review of Adaptive Experimental Designs

Neyman (1934) was the first to observe optimal sampling designs, focusing on randomly sampling

from a population of strata, where the goal is to estimate the mean of a variable in the population.

Neyman found that the optimal proportion to allocate to a particular stratumwas proportional to the

standard deviation of the variable of interest in that stratum. Soon after, Sukhatme (1935) evaluated a

scheme where a small sample was taken first and then used to estimate the population variances and

thus the optimal design. Sukhatme (1935) approximated the distribution of the estimated variances

under a normality assumption to determine how likely this pilot study approach would be to out-

perform a uniform allocation. Solomon and Zacks (1970) provides a comprehensive overview of the

literature on optimal sampling designs from both the finite-sample and Bayesian perspectives. More

recently, Melfi, Page and Geraldes (2001) and Hu and Zhang (2004) proposed analyses of two-arm and

multi-arm adaptive designs that are continuously updated throughout the experiment rather than

batched like ours, and Rosenman and Owen (2021) shows how one might use an observational study

to inform the optimal Neyman allocation in a follow-up stratified randomized experiment. Dimmery

(2019) proposes a similar design to ours that allows researchers to avoid explicitly incorporating the

design into the analysis, but requires several additional assumptions that we side-step by explicitly

adjusting for the design through stratification.

4



A more recent literature has investigated how two-batch designs can be used to find optimal

stratification based on covariates (Cytrynbaum, 2021; Tabord-Meehan, 2021; Armstrong, 2022). These

techniques are ideal when covariate information will be available at the time of randomization, but

this often is not the case for political science experiments. Tabord-Meehan (2021) proposes to stratify

(that is, partition) the (continuous) covariate space and selects the treatment allocations within those

strata that will optimize the variance of an inverse-probability weighting estimator of the ATE. The

optimal stratification tree is found using an optimization routine on the first-batch data. Cytrynbaum

(2021) proposes a similar strategy that first creates “local groups” based on a discretized version of the

estimated optimal propensity score and then formulated matched strata within these local groups

based on covariates. Randomization then occurs within these strata.

Inference in adaptive designs has been a challenge because adaptivity creates dependence across

outcomes and propensity scores moving arbitrarily close to zero can lead to non-normal asymptotic

distributions. Some authors have set asymptotic normality aside in favor of finite-sample bounds us-

ingmartingale concentration inequalities (Howard et al., 2021) while others havemodified augmented

inverse probability weighting estimators to stabilize the asymptotic distribution and regain normal-

ity (Hadad et al., 2021). Our clipping of the propensity scores in the second batch helps to avoid these

issues at the expense ofmoving away from the optimal designwhen the heteroskedasticity is extreme.

Zhang, Janson andMurphy (2020) develop a batched ordinary least squares approach, very similar

to our proposed estimator and shows that when the estimator is stratified by batch, the asymptotic

distribution of the treatment effect estimator is consistent and asymptotically normal. Their setting

is slightly different from ours in that they focus on the case where the sample sizes are constant across

batches and Bernoulli randomization is used to assign treatment within batches, whereas we focus on

a small first batch and complete randomization within batches. In addition, they make a conditional

homoskedasticity assumption that makes it difficult to apply to our setting.
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3 Setting and Background

We consider an experiment on units 𝑖 ∈ {1, . . . ,𝑁}. Let𝐷𝑖 ∈ {0, 1, . . . , 𝐽} be the treatment assigned

to unit 𝑖 and 𝑌𝑖 (𝑑) be the potential outcome for unit 𝑖 when 𝐷𝑖 = 𝑑. We take a finite-sample per-

spective and consider these potential outcomes as fixed and we make the usual SUTVA assumption

(Rubin, 1980) that the observed outcome 𝑌𝑖 = 𝑌𝑖 (𝐷𝑖). We define the sample average and variances of

these potential outcomes as

𝑌 (𝑑) = 1
𝑁

𝑁∑︁
𝑖=1

𝑌𝑖 (𝑑) 𝑆2(𝑑) = 1
𝑁 − 1

𝑁∑︁
𝑖=1

{
𝑌𝑖 (𝑑) − 𝑌 (𝑑)

}2
,

where the targets of inference are the sample average treatment effects, 𝜏(𝑑,𝑑′) = 𝑌 (𝑑) − 𝑌 (𝑑′).

Once treatment has been assigned, we can calculate the sample outcome means in each arm as

𝑌
obs(𝑑) = 𝑁−1

𝑑

𝑁∑︁
𝑖=1

I(𝐷𝑖 = 𝑑)𝑌𝑖,

where𝑁𝑑 is the number of units in arm 𝑑. The difference in means estimators for the sample average

treatment effects are �̂�(𝑑,𝑑′) = 𝑌
obs(𝑑) − 𝑌

obs(𝑑′).

To highlight how the experimental design can impact the efficiency of an experiment, we explore

two different randomization allocations for a single batch. First, the uniform allocation assigns the

same number of units,𝑁𝑑 = 𝑁/(𝐽 + 1) units, to each of the treatment arms so that

𝜋𝑢 (𝑑) = P(𝐷𝑖 = 𝑑) = 1
𝐽 + 1

.

The second strategy is the Neyman allocation (Neyman, 1934; Cochran, 1977) which allocates in pro-

portion to the standard deviation of the potential outcomes under each arm,

𝜋𝑛𝑎 (𝑑) = P(𝐷𝑖 = 𝑑) = 𝑆 (𝑑)∑𝐽
𝑗=0 𝑆 (𝑗)

.

This Neyman allocation minimizes the average of the variances of the sample outcome means in

each treatment arm, (𝐽 + 1)−1∑𝐽
𝑗=0V[𝑌

obs(𝑑)] , which also minimizes the average variance across

all possible treatment effect contrasts �̂�(𝑑,𝑑′).
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We can compare the variance of the difference in means estimator under the two proposed al-

locations, letting V𝑢 [·] be the finite-sample variance under the uniform allocation and V𝑛𝑎 [·] be

the finite-sample variance under the Neyman allocation. For simplicity of exposition, we focus on

the binary treatment case under complete randomization where we can assign the exact number of

optimal units. Letting �̂�1 = �̂�(1, 0), the variances in this setting are

V𝑢 [�̂�1] =
2𝑆2(1) + 2𝑆2(0) − 𝑆2(1, 0)

𝑁
V𝑛𝑎 [�̂�1] =

{𝑆 (1) + 𝑆 (0)}2 − 𝑆2(1, 0)
𝑁

,

where 𝑆2(1, 0) = (𝑁 − 1)−1∑𝑁
𝑖=1

{
𝑌𝑖 (1) − 𝑌𝑖 (0) − (𝑌 (1) − 𝑌 (0))

}2
is the variance in the treatment

effect across units (see, e.g., Imbens and Rubin, 2015). It is easy to show that V𝑢 [�̂�1] − V𝑛𝑎 [�̂�1] =

𝑁−1(𝑆 (1) − 𝑆 (0))2 ≥ 0 with equality only holding when 𝑆 (1) = 𝑆 (0) which is exactly when the

Neyman allocation and the uniform allocation are the same. Thus, the Neyman allocation will lead

to a more efficient estimator of the sample average treatment effect unless there is homoskedasticity

across treatment arms.

How much more efficient is the Neyman allocation? We can answer this with the relative effi-

ciency of the Neyman allocation,V𝑛𝑎 [�̂�1]/V𝑢 [�̂�1] , which is a scale-free measure of howmany fewer

units the Neyman allocation requires compared to the uniform allocation to achieve the same vari-

ance. This relative efficiency depends on both the degree of heteroskedasticity, as measured by the

treatment-control ratio of standard deviations, 𝛿 = 𝑆 (1)/𝑆 (0), and the (unidentified) correlation

between the potential outcomes, 𝜌. We show in the Supplemental Materials that we can write the

relative efficiency as
V𝑛𝑎 [�̂�1]
V𝑢 [�̂�1]

=
2𝛿(1 + 𝜌)

1 + 𝛿2 + 2𝛿𝜌
. (1)

As heteroskedasticity across treatment conditions increases (𝛿moves away from 1), the Neyman allo-

cation becomes more efficient than the uniform. For example, if the variance in the treated group is

twice that of the control group and the potential outcomes are uncorrelated, we could use 20% fewer

observations in a Neyman allocation compared to a uniform allocation to achieve the same variance.

If the potential outcomes are correlated, this comparison will change but even with a correlation of
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0.5, the Neyman allocation would require 14% fewer observations. Generally, we should expect vari-

ances will differ between treatment arms when treatment effects differ across units, and thus that is

when we should expect Neyman allocation to be advantageous.

Of course, the optimality of the Neyman allocation requires knowledge of the true variance of

the potential outcomes in each arm, so below we consider a batch adaptive design that allows us to

leverage the Neyman allocation without sacrificing sample size.

3.1 Control-augmented Neyman Allocation

The above derivation of the Neyman allocation assumes that we care about all treatment arm com-

parisons equally, including those between active treatments. When our interest is focused more on

minimizing the variance of treatment effect (compared to the control condition,𝐷𝑖 = 0), thenwe need

a slightly different allocation. In that case the allocation that minimizes the average variance weights

more heavily the control group to acknowledge its role in all of the effect comparisons. Following

Offer-Westort, Coppock and Green (2021), we call this a control-augmented Neyman allocation and

its allocation is

𝜋𝑐𝑎 (0) =
√
𝐽𝑆 (0)

√
𝐽𝑆 (0) +∑𝐽

𝑗=1 𝑆 (𝑗)
, 𝜋𝑐𝑎 (𝑑) =

𝑆 (𝑗)
√
𝐽𝑆 (0) +∑𝐽

𝑗=1 𝑆 (𝑗)
for 𝑑 ∈ {1, . . . , 𝐽}.

We show the derivation of this result in the Supplemental Materials. This allocation highlights how

the uniform allocation may be inefficient in multi-arm studies where the objects of inference are all

comparisons to a control group. In those cases, even if there is no heteroskedasticity across treatment

conditions, there is still an efficiency advantage to allocating more units to control than to the other

conditions. The above result implies that even with just two treatment arms and a control arm, if the

variances are all (roughly) equal, the control arm should have roughly 40% more units than either of

the other two arms to reach maximum efficiency.

Of course, it is not always clear that comparisons to control are the only object of interest in

multi-arm studies. Scholars may use such comparisons as a basis for comparing different treatments,
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but will often go on to compare different treatment arms directly to see if one has a statistically sig-

nificantly higher outcome than another. In those cases, the Neyman allocation may still be desirable.

4 The BANA Design

We now describe the BANA design, first proposed by Robbins (1952) though that discussion is rather

informal. Hahn, Hirano and Karlan (2011) formalized the design for the binary treatment case un-

der a superpopulation approach and we extend this to multi-arm experiments and focus on a finite-

population setting. TheBANAdesign splits our units into twobatches {1, . . . ,𝑁1} and {𝑁1+1, . . . ,𝑁},

where𝑁2 = 𝑁 −𝑁1. In the first batch, we perform a completely randomized design with uniform al-

location so that𝑁1𝑑 = 𝑁1/(𝐽 +1) units are allocated to treatment arm 𝑑. From this arm, we estimate

the variances of the outcome in each arm as

𝑠21(𝑑) =
1

𝑁1𝑑 − 1

𝑁1∑︁
𝑖=1

I(𝐷𝑖 = 𝑑)
(
𝑌𝑖 − 𝑌

obs
1 (𝑑)

)2
,

where 𝑌
obs
1 (𝑑) is the average outcome in the 𝐷𝑖 = 𝑑 group in the first batch. We use these estimated

variances to estimate the Neyman allocation proportions,

𝜋𝑛𝑎 (𝑑) =
𝑠1(𝑑)∑𝐽
𝑗=0 𝑠1(𝑗)

,

whichwe then use for the treatment assignment in the second batch. With a Bernoulli randomized de-

sign, we can simply draw𝐷𝑖 as an i.i.d. categorical variablewith probability vector (𝜋𝑛𝑎 (0), . . . ,𝜋𝑛𝑎 (𝐽)).

With a completely randomized design we have to choose the (integer) allocation of units that best ap-

proximates those proportions:

argmin
(𝑛20,...,𝑛2𝐽 )

𝐽∑︁
𝑗=0

��𝑛2𝑗 −𝑁2𝜋𝑛𝑎 (𝑗)
�� , such that 𝑛2𝑗 ∈ {𝑄, . . . ,𝑁2 − 𝑄 × 𝐽},

𝐽∑︁
𝑗=0

𝑛2𝑗 = 𝑁2, (2)

where we use the lower case for 𝑛2𝑗 because these allocation numbers are functions of the treatment

assignment in the first batch and are therefore random, even in the finite sample setting. Here, we have
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allowed for a minimum number of units that can be allocated to a given arm, 𝑄.1 This can be helpful

in the extremely rare cases where there is extreme in-sample heteroskedasticity across treatment

arms in the first batch that would imply that very few (or no) observations be assigned to one of the

arms. Several fast algorithms exist for solving this optimization routine exist such as Friedrich et al.

(2015) (see Ravichandran et al., 2023, who use these integer optimizations in this setting), but it is also

possible to use a crude rounding approximation. Once we complete the second batch, we observe the

outcomes as

𝑌
obs
2 (𝑑) = 1

𝑛2𝑑

𝑁∑︁
𝑖=𝑁1+1

I(𝐷𝑖 = 𝑑)𝑌𝑖.

The adaptive nature of the BANA designs creates dependence between units, complicating the

analysis of the experiment. Naively combining both batches and analyzing them as a single experi-

ment is problematic because treatment assignment for some units (those in the second batch) depends

on the realized outcomes of other units (those in the first batch). Alternatively, we could drop the first

batch entirely and only analyze the second batch conditional on the first batch, but this sacrifices sta-

tistical power.

A better way to analyze the BANA design without bias while maximizing statistical power is to

treat it as a stratified randomized design where the batch is the stratifying variable (Zhang, Janson

and Murphy, 2020). Let �̂�𝑏 (𝑑,𝑑′) = 𝑌
obs
𝑏 (𝑑) − 𝑌

obs
𝑏 (𝑑′) be the estimated treatment effect in batch 𝑏

and define the usual stratified estimator as

�̂�𝑠(𝑑,𝑑′) =
(

𝑁1

𝑁1 +𝑁2

)
�̂�1(𝑑,𝑑′) +

(
𝑁2

𝑁1 +𝑁2

)
�̂�2(𝑑,𝑑′),

with variance estimator

V̂[�̂�𝑠(𝑑,𝑑′)] =
(

𝑁1

𝑁1 +𝑁2

)2
V̂1 [�̂�1(𝑑,𝑑′)] +

(
𝑁2

𝑁1 +𝑁2

)2
V̂2 [�̂�2(𝑑,𝑑′)],

where V̂𝑏 [·] are the usual conservative Neyman variance estimators within each batch:

V̂1 [�̂�1(𝑑,𝑑′)] =
𝑠21(𝑑)
𝑁1𝑑

+
𝑠21(𝑑′)
𝑁1𝑑′

, V̂2 [�̂�2(𝑑,𝑑′)] =
𝑠22(𝑑)
𝑛2𝑑

+
𝑠22(𝑑′)
𝑛2𝑑′

.

1While we focus on a completely randomized design, these ideas can be straightforwardly generalized to a stratified
randomized design.

10



In the Supplemental Materials we show that this variance estimator is unbiased when treatment ef-

fects are constant and conservative for the true variance otherwise.2

Finally, we note that while we focus on the case of just two batches, it would be easy to extend this

to larger numbers of batches that allow better estimation of the optimal allocation. Our simulation

results below, however, indicate that we can obtain much of the benefit of the optimal design with a

relatively small first batch, calling into question the need for further batches.

4.1 BANA with Binary Outcomes

Using the BANA design with a binary outcome variable presents a unique challenge due to the de-

pendence between the mean and variance of Bernoulli random variables. In particular, when initial

batch sizes are small and probabilities of success, P(𝑌𝑖 = 1), are near zero or one, large finite-sample

errors in estimating the means in each condition can lead to highly variable estimates of the weights

for the second batch. These unstable estimates of the weights can produce second-batch treatment

allocations that perform worse than the uniform allocation.3

To address this issue in the binary outcome case, we adopt an empirical Bayesian approach that

flexibly shrinks theweights toward the uniform allocation. Typically, wewould estimate the standard

deviations of each arm with the usual sample standard deviation estimator. We instead adjust this

estimator by shrinking toward the grand outcome mean across all conditions, 𝑝grand = 𝑁−1
1

∑𝑁1
𝑖=1 𝑌𝑖 .

In particular, we estimate the standard deviation using proportions that are shrunk toward the grand

mean,

𝑠1𝜆(𝑑) =
√︂

𝑁1𝑑

𝑁1𝑑 − 1
𝑝𝜆(𝑑) (1 − 𝑝𝜆(𝑑)),

where

𝑝𝜆(𝑑) =
(

𝜆

𝑁1𝑑 + 𝜆

)
𝑝grand +

(
𝑁1𝑑

𝑁1𝑑 + 𝜆

)
𝑌

obs
1 (𝑑),

2With a completely randomized experiment and a binary treatment, our stratification estimator is equivalent to the
weighting estimator of Hahn, Hirano and Karlan (2011).

3See the simulation section for more on this problem.
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where the 𝜆 parameter captures howmuchwe shrink toward the grandmean. This shrinkage propor-

tion estimator 𝑝𝜆(𝑑) adds 𝜆 artificial observations to each treatment arm that have outcomes exactly

at the overall mean, 𝑝grand. The higher the value of 𝜆, the closer the shrinkage estimator will be to

the grand mean. We can then plug these estimates of the standard deviations into the formula for the

Neyman weights 𝜋𝑛𝑎 (𝑑) given above.4

4.2 Randomization Inference for the BANA Design

One can use the variance estimator above to construct confidence intervals using the usual large-

sample normal approximation (which works well in our simulations), but we can also leverage the

design to implement a randomization inference approach that is valid for all sample sizes. Focusing

on the binary treatment setting, we now describe a method for inference on the BANA design that

leverages randomization inference under a sharp null hypothesis,

𝐻0 : 𝑌𝑖 (1) = 𝑌𝑖 (0) ∀𝑖,

which can be easily generalized to the multi-arm setting. Under this sharp null, the treatment has no

effect for any unit and the optimal design is thus the uniform allocation.

There are two possible ways to conduct randomization inference in this setting. The simplest is to

condition on the first-batch data and perform a standard permutation test on the second batch which

obviously will have lower power due to the omission of the first-batch data. The second approach is

to replicate both stages of the randomization procedure repeatedly. Specifically, repeat the following

steps for 𝑟 = 1, . . . ,𝑅:

1. Use complete randomization to assign 𝑁11 units from the first batch to treatment (𝐷𝑖,𝑟 = 1)

and𝑁10 to control (𝐷𝑖,𝑟 = 0).
4This shrinkage estimator for the group means that we plug into the weights is also an empirical Bayes estimator. In

particular, we model the data,
∑

𝑖:𝐷𝑖=𝑑,𝑖<𝑁1 𝑌𝑖 , as distributed Binomial(𝑁1𝑑,𝑝𝑑) and place a prior distribution over the
success probability as 𝑝𝑑 ∼ Beta(𝛼, 𝛽), where 𝛼 = 𝑝grand𝜆 and 𝛽 = (1 − 𝑝grand)𝜆.
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2. Calculate the observed mean and standard deviation of the treated and control group

𝑌obs
1,𝑟 (𝑑) = 1

𝑁1𝑑

𝑁1∑︁
𝑖=1

I(𝐷𝑖,𝑟 = 𝑑)𝑌𝑖, �̃�21,𝑟 (𝑑) =
1

𝑁1𝑑 − 1

𝑁1∑︁
𝑖=1

I(𝐷𝑖,𝑟 = 𝑑)
(
𝑌𝑖 − 𝑌obs

1,𝑟 (𝑑)
)2

.

3. Calculate the estimated optimal allocation 𝜋𝑛𝑎 ,𝑟 (𝑑) = �̃�1,𝑟 (𝑑)/(̃𝑠1,𝑟 (1) + �̃�1,𝑟 (0)) and conduct

a complete randomization assigning 𝑛21,𝑟 = ⌊𝑁2𝜋𝑛𝑎 ,𝑟 (𝑑)⌋ units from the second batch to

treatment and 𝑛20,𝑟 = 𝑁2 − 𝑛21,𝑟 to control.

4. Calculate the observed mean of the second batch, 𝑌obs
2,𝑟 (𝑑) and estimated treatment effect

�̃�𝑟 =

(
𝑁1

𝑁

) {
𝑌obs
1,𝑟 (1) − 𝑌obs

1,𝑟 (0)
}
+
(
𝑁2

𝑁

) {
𝑌obs
2,𝑟 (1) − 𝑌obs

2,𝑟 (0)
}
.

5. Use the estimated treatment effect to calculate a test statistic, 𝑇𝑟.

We can then compare the observed value of the test statistic in the data, 𝑇 , with the randomization

distribution of the test statistic 𝑇𝑟. We can calculate a p-value for the sharp null hypothesis in the usual

way by 1
𝑅

∑𝑅
𝑟=1 I(𝑇 > 𝑇𝑟).

It is also possible to formulate confidence intervals for the estimated effect by considering a grid of

sharp null hypotheses all assuming a constant treatment effect. Under each of these null hypotheses,

we can determine all of the missing potential outcomes and we simply modify the above algorithm

to use these imputed potential outcomes rather than the observed outcomes. Then, we can find the

set of null hypotheses that cannot be rejected at level 𝛼 to form a (1 − 𝛼) × 100 percent confidence

interval.5

Finally, in the above procedure, we fix the units that belong to the first and second batch, rather

than allowing, for example, unit 1 to be potentially assigned to the first or second batch. This is

likely consistent with most empirical designs where the researcher has control over what treatment

assignment each unit receives but not who is in the first or second batch. If the units across batches

are exchangeable (possibly because the batching was randomly assigned), one could modify the above

procedure to allow for units to be assigned either to the first or second batch.
5These types of randomization-inference-based intervals are sometimes referred to as Fisher intervals.
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5 Simulation Studies

We now present a pair of simulation studies that illustrate the advantages of the BANA design with a

binary treatment. We simulate experiments with Gaussian outcomes and binary outcomes separately

to compare the performance of the BANA design in both the continuous and discrete outcome cases.

Regardless of the type of outcome, we simulate three different treatment allocation schemes. The

first is a simple uniform allocation of all respondents equally to treatment and control. The second

is the BANA design described above. The third allocation scheme is the BANA design with oracle

Neyman allocation, using the true standard deviation of the outcome in the treatment and control

conditions. Note that the oracle Neyman allocation is infeasible but the theoretical best. The BANA

design is our best approximation of this infeasible oracle. Comparing BANA to the oracle allows us

to observe how much noise the estimation of variance introduces into estimates of the ATE. Com-

paring the oracle to the uniform allows us to observe how much potential gains we can get if we use

adaptive designs. All three allocation schemes use complete randomization within batches. We set

the minimum number of units that can be allocated to a given treatment arm to 𝑄 = 2, allowing us

to estimate variance within each experimental arm.

5.1 Gaussian Outcome

The data generating process (DGP) for the simulations with a Gaussian outcome, regardless of type

of treatment assignment, draws the potential outcomes as

𝑌𝑖 (0) ∼ N (0,𝜎2
𝑐 ), 𝑌𝑖 (1) ∼ N (0.1,𝜎2

𝑡 ),

for all 𝑖 ∈ {1, . . . ,𝑁}. We define the observed outcome as 𝑌𝑖 = 𝐷𝑖𝑌𝑖 (1) + (1 − 𝐷𝑖)𝑌𝑖 (0) where

𝐷𝑖 indicates treatment for unit 𝑖. This DGP has an ATE of 0.1 but individual-level treatment effect

heterogeneity.

For each allocation scheme, we vary the ratio of 𝜎𝑡 to 𝜎𝑐 from 0.05 to 1, which controls the het-

eroskedasticity across treatment conditions. At ratios closer to zero, the outcome under treatment
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is much less variable than under control, and at ratios closer to one the variance of the outcome be-

comes more similar. The performance of the BANA design does not depend on which treatment arm

has the higher variance (since the Neyman allocation treats all arms equivalently) so we focus on the

values of the ratio between zero and one (i.e., higher variance under control). Importantly, while we

vary the relative variability of the outcomes in each of the conditions, we hold the overall variability

of the outcomes across conditions constant at 𝜎 = 1. We also vary the initial batch size (𝑁1) over the

values {10, 25, 50} to investigate how estimation uncertainty from the initial batch could affect our

inferences, though we present a wider variety of batch and sample sizes in the Supplemental Mate-

rials. For each combination of parameters, we draw 𝑅 = 30, 000 iterations, redrawing the potential

outcomes and assigning treatment in each replication. Using the simulated data, we estimate the ATE

and its standard error with the stratified estimators defined above. These simulations are based on

a superpopulation approach, which we can view as approximating the average performance of the

estimators across finite samples. In particular, in each simulation new potential outcomes are drawn

and treatment is reassigned. Root mean squared error (RMSE) and coverage are taken with respect

to the “superpopulation” parameters that generate potential outcomes.

Our main comparison between allocation schemes is made in terms of power to detect the true

ATE. Specifically, since power is P(reject𝐻0 | 𝐻1 is true) and we have constructed𝐻1 to be true, we

simply calculate the proportion of estimates for which 𝑝 < .05 using a t-test under the large-sample

normal approximation. We also calculate root mean squared error (RMSE) and 95% confidence in-

terval coverage probabilities under each allocation scheme.

Figure 1 presents the results of this simulation. Beginning with statistical power in panel a), we

see that the BANA design has higher power than a uniform design when the variance of the outcome

is very different across conditions. When using a very small initial batch (𝑁1 = 10), BANA under-

performs both the oracle counterpart and the uniform allocation because estimation error leads to

inefficient allocation of units. However, we only need a slightly larger initial batch to combat this

problem—when using a still very modest initial batch size of 𝑁1 = 25, BANA does about at least as
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Figure 1: Gaussian outcome simulation results. N = 400, R = 30,000. Horizontal panels differ by the size
of the first batch. The 𝑥-axis displays the ratio of the standard deviations of the outcome in the treatment
and control conditions, but note that overall variability of the outcome is constant. Colors indicate allocation
scheme. The outcomes are a) power to detect the treatment effect, b) root mean squared error, and c) 95% CI
coverage probability.
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well as both the oracle and uniform designs at any level of similarity between the variances. With an

even larger initial batch size (𝑁1 = 50) this pattern continues, but power dips down at lower levels of

similarity. This is caused by the fact that an increasing proportion of the units used in estimating the

ATE are being allocated inefficiently in the initial batch, leading the power curves to be more similar

across allocation types.

A similar pattern can be observed in Figure 1(b) with RMSE. Again, we see BANA performing at

least as well as the uniform design except for at larger ratios in the smallest initial batch size (𝑁1 =

10). Initial batch sizes of 25 and 50 produce very similar results. Lastly, panel c) shows that all the

allocation strategies have roughly nominal coverage of the 95% confidence intervals.

Based on these results, we recommend an initial batch size of at least 25–50 units. For studies with

larger total sample sizes, the researcher may be willing to allocate more units to the first stage to aid

in estimation of the Neyman probabilities, but very little efficiency is gained by using more than 50

units in the initial batch. Figure SM.7 in the Supplemental Materials shows simulation results on a

wider array of first and second batch sizes and Figure SM.8 shows the same results but using only the

second batch for estimation, both of which suggest similar conclusions. We note, however, that the

simulations are not exhaustive and different data generating mechanisms may lead to different batch

size recommendations. Furthermore, our results show that a uniform allocation in the second batch

is a reasonable approach when the heteroskedasticity is not too severe.

5.2 Binary Outcome

In the binary simulation case we use the following DGP:

𝑌𝑖 (0) ∼ Bern(𝑝0), 𝑌𝑖 (1) ∼ Bern(𝑝0 + 0.1),

for all 𝑖 ∈ {1, . . . ,𝑁} where the observed outcome is defined as above. We control average probabil-

ities of success in each experimental condition, and these also determine variability of the outcome.

Specifically, we vary 𝑝0 from 0.05 to 0.4 with a constant treatment effect of 0.1, meaning the prob-

ability of success under treatment varies from 0.15 to 0.5. Since the variance of a Bernoulli random
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variable is maximized at 0.5 and the BANA design is agnostic to which condition is more variable, we

can safely ignore success probabilities between 0.5 and 1 in these simulations. Because the outcome

variance is tied to the probability of success, the overall variability cannot be held constant if the effect

size is also held constant, in contrast to the Gaussian simulations.

Importantly, as described in Section 4.1, we add a number of artificial observations equal to the

grand mean of the outcome to the treatment and control conditions in the first batch. This guards

against inefficient allocations caused by estimation error when the initial batch size is small or the

probability of success is extreme.

Additionally, we impose a minimum probability of allocation to treatment in the second batch of

0.1, ensuring that each condition is at least 10% of the overall batch size. This guards against cases in

which the variance of the outcome in one of the conditions is extremely small or zero, which occurs

regularly in small initial batch sizes with rare outcomes. This step is taken directly after estimating

the weights with artificial observations.

As in theGaussian simulations, we vary the initial batch size, this time over the values {50, 100, 200}.

Discussed in more detail later, the BANA design needs larger initial batch sizes to accurately estimate

variances in the binary case. For each combination of parameters, we draw 𝑅 = 30, 000 iterations,

again redrawing the potential outcomes and assigning treatment in each replication. We estimate the

ATE and its standard error in exactly the same way as above.

Simulation results with a binary outcome are shown in Figure 2. We find much more modest

gains under these conditions, sometimes even resulting in allocations that are less efficient relative

to uniform when batch size and the probability of success are low.6 This likely results because het-

eroskedasticity across experimental conditions is constrained by the fact that the outcome is binary

combined with difficulty estimating probabilities of success in low first-batch sizes with rare out-

comes. For context, the minimum standard deviation ratio is .05 in the Gaussian case, while the
6Note that this problem is significantly attenuated by the addition of observations equal to the grand mean before

calculating treatment allocation weights for the second batch. See Figures SM.5 and SM.6 to compare. While main results
in the Gaussian case are presented in terms of power, we use relative efficiency in the binary case to better visualize these
modest gains relative to simulation noise.
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Figure 2: Binary outcome simulation results. 𝑁 = 1, 000,𝑅 = 30, 000. Horizontal panels differ by the size of the
first batch and vertical panels differ by the effect size, informed by the meta-analysis below. The 𝑥-axis displays
the probability of success in the control condition; note that unlike the Gaussian case, total variability is not
constant. The 𝑦-axis displays the ratio of the standard error of the treatment effect in the Neyman case (either
oracle or estimated) to the uniform case. Colors indicate allocation scheme relative to uniform. Minimum
allocation to each condition in the second batch is set to .1 and five additional observations were added to each
condition in the first batch.

minimum ratio in the binary case is about .37. Still, we do find that experiments with large effect sizes

can save between 5 and 8% of their sample size using the BANA design.
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6 Meta-analysis

Simulations provide evidence that the BANA design can improve efficiency, but how do these simu-

lation compare with real studies? To gauge the potential for efficiency gains from the BANA method

in real studies, we collected or computed the variance of the outcome in each treatment arm in sev-

eral experimental studies published in top journals in political science. The studies, listed in Table 1,

span all substantive fields of political science and include both survey and field experiments. Table 1

shows the control standard deviation of the outcome and the standard deviation of the outcome in

the most variable treatment arm. We use the relative efficiency formula in (1) to compute the pro-

portional reduction in variation that would be obtained under a BANA design vs uniform allocation

in each study, assuming uncorrelated potential outcomes. Larger values indicate more savings under

BANA. This ratio also roughly approximates the reduction in sample size under the BANA design

to achieve the same precision on the estimate of the treatment effect, though we note that these re-

ductions only apply to the second batch. Further, these reductions are based on treating estimated

variance as the truth, and thus reflect gains in an oracle BANA design. We expect in practice to have

somewhat smaller gains due to the estimation of variance.

Importantly, we assume that every observation in each study could be allocated according to the

BANA design. Because our recommendation of initial batch size varies according to the type of study

design, we calculate expected savings as if each study listed had been previously informed by its own

pilot study from which outcome variances in each condition were estimated.

Results of the meta-analysis are shown in Table 1. We find that in most of the political science

experiments under consideration, treatment has only a small effect on the variance of the outcome,

leaving the BANA design with little leverage to improve upon the standard design. However, we also

find that improvements to precision from the BANA design can be considerable—researchers can

reduce the variance of the treatment effect estimate by 30% in some cases, leading to a comparable

reduction in the sample size needed to achieve a given amount of statistical power as well. These
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Study Control
SD

Treatment
SD

Variance Re-
duction (%)

Type of Study

1 Siegel and Badaan (2020) 5.643 27.212 30.10 Six arm experiment
2 Vernby (2019)* 0.152 0.398 16.70 2x8 factorial
3 Eble et al. (2021) 14.2 22.3 4.70 Two arm experiment
4 DeVreese (2004) 0.88 0.6 3.50 Two arm experiment
5 Broockman (2013)* 0.5 0.359 2.60 Two arm experiment
6 Eggers et al. (2017)* 0.494 0.372 1.90 2x2 factorial
7 Goff et al. (2017) 3.34 2.57 1.70 Two arm experiment
8 Holman et al. (2016) 16.522 21.019 1.40 2x4 factorial
9 Simas and Murdoch (2020) 0.946 1.121 0.70 2x2 factorial
10 Faulkner et al. (2015) 0.68 0.59 0.50 Two arm experiment
11 Broockman and Kalla (2016) 1 1.14 0.40 Two arm experiment
12 Gerber et al. (2008)* 0.465 0.485 0.00 Five arm experiment
13 Gerber et al. (2003)* 0.486 0.492 0.00 2x4 factorial

Table 1: Estimated reduction of variance of selected experiments in political science. Variance reduction is
calculated with respect to the two most disparate experimental conditions in terms of variance and assumes
uncorrelated potential outcomes. Asterisks indicate studies with binary outcome variables, though note that
no artificial observations were added as in the simulations. Full citations in the Supplemental Materials.

improvements do not appear to be significantly related to the support of the outcome variable, be it

binary or otherwise, as indicated by the asterisks in Table 1. Thus, the BANA method has significant

potential for improving precision and, as shown by the simulation evidence, very little loss of power

when the uniform design is optimal and the initial batch is large enough. Recall that reduction in

variance is approximately proportional to reductions in necessary sample size (see Branson, Li and

Ding, 2022, for some sample size calculations for finite-population causal inference).

7 Practical advice

We now discuss advice for how and when practitioners can make the best use of adaptive designs,

and in particular BANA. First, in order for the BANA design to successfully reduce variance, the

treatment and the units in both the first and second batch need to be similar. Specifically, the variance

in each treatment arm needs to be the same or close between batches in order for the BANA design

to optimally allocate units into treatment and control in the second batch. Therefore, BANA may
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work best when run within a single experiment by splitting the sample into two batches, rather than

when using a prior study on a different population or with a set of treatments that are not precisely

the same as a first batch.

Second, a conservative approach to using BANA is to shrink the allocation probabilities towards

uniform assignment, especially in settings where the first and second batch may differ. We developed

one version of this approach for binary outcomes, but one could generalize this ideal to other types

of outcomes. By weighting towards uniform allocation, one can partially offset potential harm from

large changes in variance from batch to batch, for example if the first batch is temporally or spatially

distant to the second batch. The disadvantage of this approach is that it will reduce the potential

variance gains from using the BANA design.

Third, it is possible to extend the BANA approach to do multiple batches or to take an “online”

approach. Here, the researcher would update the weights sequentially through the multiple batches

as more data is collected. This may also help reduce dependence of the weights on an initial “poor”

batch that does not resemble later units. Dai, Gradu and Harshaw (2023) discuss one such adaptive

design and also implement adaptive constraints on how far the allocation probabilities can deviate

from uniform.

Fourth, researchers can implement BANA in a block randomized design by simply applying the

adaptive design within each block independently. Ravichandran et al. (2023) provide formal theory

on optimal allocation in block randomized designs. Batch adaptive Neyman allocation could be par-

ticularly advantageous with block randomized designs if heterogeneity varies from block to block.

For example, if there is a block of units who are all very homogeneous in terms of outcomes and

another block that is very heterogenous in terms of treatment effects, the BANA design could take

advantage of this to assign more uniform weights to the former compared to the latter.

Fifth, BANA will likely work best with continuous outcomes and should be used with some cau-

tion with binary outcomes. As demonstrated in our theoretical results and simulations, BANA can, in

theory, provide improvement over uniform in binary settings, but the improvement is limited due to
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constraints on the difference in variances in binary settings and the improvement may be erased by

estimation variability. Therefore, we recommend using BANA in binary settings only when a large

first batch can be used and the treatment effect is believed to be of reasonable size, which implies

larger difference in variances in the binary setting. Luckily, continuous settings do not have the same

constraints on the size of variance or variance being tied to means and treatment effect sizes. For bi-

nary settings in our simulations, we found a first batch size of at least 100–200 worked well whereas

for the continuous outcome simulation even a small batch size of 25 leads to BANA being close to the

true optimal allocation.

8 Conclusion

In this paper, we have shown how batch-adaptive experimental designs that leverage Neyman allo-

cation can lead to improved statistical efficiency. Our proposed design is purposefully simple so that

it can be implemented easily by practitioners, but there are more complex optimal designs that help

to address different criteria. A number of these complexities should be the topic of future research

in this area. In particular, incorporating the costs of recruitment into this analysis might provide an

optimality that balances statistical criteria with the ability to implement the design. Furthermore,

it would be beneficial for survey platforms to build this type of design into their products, allowing

researchers to conduct these studies without manually adjusting the treatment allocations.

Beyond the efficiency gains of the BANA design, there are additional advantages to fielding ex-

periments in batches. Pilot studies are already a common practice in experimental work, allowing

researchers to find potential problems in their study design before the final study is conducted. The

BANA design formalizes the use of the pilot study to inform the optimal design of the main study, but

the initial batch can also be used to make the usual changes to the design—clarify prompts, change

the measurement of variables, include additional moderating or mediating variables, and so on.

23



References

Armstrong, Timothy B. 2022. “Asymptotic Efficiency Bounds for a Class of Experimental Designs.”

arXiv:2205.02726 [stat] .

Berry, Donald A. and Bert Fristedt. 1985. Bandit problems. Dordrecht: Springer Netherlands.

Branson, Zach, Xinran Li and Peng Ding. 2022. “Power and Sample Size Calculations for Rerandom-

ized Experiments.” arXiv preprint arXiv:2201.02486 .

Cochran, William G. 1977. Sampling Techniques, 3rd Edition. New York: John Wiley.

Cytrynbaum, Max. 2021. “Designing Representative and Balanced Experiments by Local Randomiza-

tion.” arXiv:2111.08157 [econ, math, stat] .

Dai, Jessica, Paula Gradu and Christopher Harshaw. 2023. “Clip-OGD: An Experimental Design for

Adaptive Neyman Allocation in Sequential Experiments.” arXiv preprint arXiv:2305.17187 .

Dimmery, Drew. 2019. “Adaptive Neyman Allocation.” Working paper.

Fisher, R.A. 1935. The design of experiments. Edinburgh: Oliver and Boyd.

Friedrich, Ulf, Ralf Münnich, Sven de Vries and Matthias Wagner. 2015. “Fast integer-valued algo-

rithms for optimal allocations under constraints in stratified sampling.” Computational Statistics &

Data Analysis 92:1–12.

Hadad, Vitor, David A. Hirshberg, Ruohan Zhan, Stefan Wager and Susan Athey. 2021. “Confidence

intervals for policy evaluation in adaptive experiments.” Proceedings of the National Academy of

Sciences 118(15):e2014602118.

Hahn, Jinyong, Keisuke Hirano and Dean Karlan. 2011. “Adaptive Experimental Design Using the

Propensity Score.” Journal of Business & Economic Statistics 29(1):96–108.

24



Howard, Steven R., Aaditya Ramdas, Jon McAuliffe and Jasjeet Sekhon. 2021. “Time-uniform, non-

parametric, nonasymptotic confidence sequences.” The Annals of Statistics 49(2).

Hu, Feifang and Li-Xin Zhang. 2004. “Asymptotic properties of doubly adaptive biased coin designs

for multitreatment clinical trials.” The Annals of Statistics 32(1).

Imai, Kosuke, Gary King and Elizabeth A. Stuart. 2008. “Misunderstandings between experimental-

ists and observationalists about causal inference.” Journal of the Royal Statistical Society: Series A

(Statistics in Society) 171(2):481–502.

Imbens, Guido W. and Donald B. Rubin. 2015. Causal Inference for Statistics, Social, and Behavioral

Sciences. Cambridge University Press.

Melfi, Vincent F., Connie Page and Margarida Geraldes. 2001. “An adaptive randomized design with

application to estimation.” Canadian Journal of Statistics 29(1):107–116.

Neyman, Jerzy. 1934. “On the Two Different Aspects of the Representative Method: The Method of

Stratified Sampling and the Method of Purposive Selection.” Journal of the Royal Statistical Society

97(4):558–625.

Offer-Westort, Molly, Alexander Coppock and Donald P. Green. 2021. “Adaptive Experimental De-

sign: Prospects and Applications in Political Science.”American Journal of Political Science 65(4):826–

844.

Pashley, Nicole E and Luke W Miratrix. 2022. “Block what you can, except when you shouldn’t.”

Journal of Educational and Behavioral Statistics 47(1):69–100.

Ravichandran, Arun, Nicole E Pashley, Brian Libgober and Tirthankar Dasgupta. 2023. “Optimal allo-

cation of sample size for randomization-based inference from 2𝐾 factorial designs.” arXiv preprint

arXiv:2306.12394 .

25



Robbins, Herbert. 1952. “Some aspects of the sequential design of experiments.”Bulletin of the American

Mathematical Society 58(5):527–535.

Rosenman, Evan T. R. and Art B. Owen. 2021. “Designing experiments informed by observational

studies.” Journal of Causal Inference 9(1):147–171.

Rubin, Donald B. 1980. “Randomization Analysis of Experimental Data: The Fisher Randomization

Test Comment.” J. Amer. Statist. Assoc. 75(371):591–593.

Solomon, H and S Zacks. 1970. “Optimal Design of Sampling from Finite Populations: A Criti-

cal Review and Indication of New Research Areas.” Journal of the American Statistical Association

65(330):653–677.

Sukhatme, P. V. 1935. “Contribution to the Theory of the Representative Method.” Supplement to the

Journal of the Royal Statistical Society 2(2):253.

Tabord-Meehan, Max. 2021. “Stratification Trees for Adaptive Randomization in Randomized Con-

trolled Trials.” arXiv:1806.05127 [econ, stat] .

Zhang, Kelly, Lucas Janson and Susan Murphy. 2020. Inference for Batched Bandits. In Advances in

Neural Information Processing Systems, ed. H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan and

H. Lin. Vol. 33 Curran Associates, Inc. pp. 9818–9829.

26



Supplemental Materials (to appear online)

A Derivation of the Control-augmented Neyman Allocation

To show that control-augmented Neyman allocation is optimal, we set up the constrained optimiza-

tion problem

argmin
(𝜋0,𝜋1,...,𝜋𝐽 )

𝐽∑︁
𝑗=1

(
𝑆2(𝑗)
𝜋𝑗𝑁

+ 𝑆2(0)
𝜋0𝑁

)
s.t.

𝐽∑︁
𝑗=0

𝜋𝑗 = 1.

The first order conditions of this optimization problem imply that for 𝑗 > 0

𝜋𝑗

𝜋0
=

𝑆 (𝑗)
√
𝐽𝑆 (0)

.

The sum-to-one constraint implies further that

𝜋0
©­«

𝐽∑︁
𝑗=1

𝜋𝑗

𝜋0

ª®¬ = 1 − 𝜋0,

=⇒ 𝜋0

∑𝐽
𝑗=1 𝑆 (𝑗)√
𝐽𝑆 (0)

= 1 − 𝜋0

which after rearranging yields,

𝜋0 =

√
𝐽𝑆 (0)

√
𝐽𝑆 (0) +∑𝐽

𝑗=1 𝑆 (𝑗)
.

Substituting this into the first order conditions yields the remainder of the Neyman allocation.

B Proofs

B.1 Relative efficiency of the Neyman allocation

Define the finite sample correlation between the potential outcomes as

𝜌 =
1

(𝑁 − 1)𝑆 (1)𝑆 (0)

𝑁∑︁
𝑖=1

{
𝑌𝑖 (1) − 𝑌 (1)

} {
𝑌𝑖 (0) − 𝑌 (0)

}
,

and note that we have 𝑆2(1, 0) = 𝑆2(1) + 𝑆2(0) − 2𝜌𝑆 (1)𝑆 (0) = 𝑆2(0) (1 + 𝛿2 − 2𝛿𝜌). We can write

the relative efficiency as

V𝑛𝑎 [�̂�1]
V𝑢 [�̂�1]

=
{𝑆 (1) + 𝑆 (0)}2 − 𝑆2(1, 0)
2𝑆2(1) + 2𝑆2(0) − 𝑆2(1, 0) = 1 − {𝑆 (1) − 𝑆 (0)}2

2𝑆2(1) + 2𝑆2(0) − 𝑆2(1, 0) .
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Substituting in 𝑆 (1) = 𝛿𝑆 (0) yields,

V𝑛𝑎 [�̂�1]
V𝑢 [�̂�1]

=
𝑆2(0) (1 + 𝛿)2 − 𝑆2(0) (1 + 𝛿2 − 2𝛿𝜌)
2𝑆2(0) (1 + 𝛿2) − 𝑆2(0) (1 + 𝛿2 − 2𝛿𝜌)

=
2𝛿(1 + 𝜌)

1 + 𝛿2 + 2𝛿𝜌
.

The calculation under the superpopulation model differs slightly. Let 𝜎2(1) = V𝑃 [𝑌𝑖 (1)] and

𝜎2(0) = V𝑃 [𝑌𝑖 (0)] be the (super)population variances of the potential outcomes, where we useV𝑃 to

denote the variance over both randomization and random sampling from the population. We define

the relative standard deviations similarly to the finite sample case as 𝛿 = 𝜎(1)/𝜎(0). Let V𝑃𝑛𝑎 [�̂�1]

andV𝑃𝑢 [�̂�1] be the superpopulation variances of the estimators. Standard experimental design results

give

V𝑃𝑢 [�̂�1] =
2(𝜎2(1) + 𝜎2(0))

𝑁
=
2(𝛿2𝜎2(0) + 𝜎2(0))

𝑁
,

V𝑃𝑛𝑎 [�̂�1] =
(𝜎(1) + 𝜎(0))2

𝑁
=

(𝛿𝜎(0) + 𝜎(0))2
𝑁

.

From this, we can see the superpopulation relative efficiency is

V𝑃𝑛𝑎 [�̂�1]
V𝑃𝑢 [�̂�1]

=
(1 + 𝛿)2
2(𝛿2 + 1) .

B.2 Unbiasedness

In this section we prove the unbiasedness of the stratified treatment effect estimator and the conser-

vativeness of the stratified variance estimator (and unbiased under constant effects for the latter). For

the purposes of showing unbiasedness of �̂�𝑠, is sufficient to show that 𝑌
obs
2 (𝑑) is unbiased for 𝑌2(𝑑)

because𝑌
obs
1 (𝑑) is unbiased for𝑌1(𝑑) for all 𝑑 by standard results on experimental design. We focus

here on the case with a completely randomized design and take a finite population point of view so

that the only source of randomness comes from the treatment assignment. LetD1 = (𝐷1, . . . ,𝐷𝑁1)
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be the realized assignments in the first batch. Then using the law of iterated expectations we have:

E
[
𝑌

obs(𝑑)
]
=

𝑁2∑︁
𝑖=𝑁1+1

𝑌𝑖 (𝑑)E
[
1
𝑛2𝑑
I(𝐷𝑖 = 𝑑)

]
=

𝑁2∑︁
𝑖=𝑁1+1

𝑌𝑖 (𝑑)E
[
1
𝑛2𝑑
E {I(𝐷𝑖 = 𝑑) | D1}

]
=

𝑁2∑︁
𝑖=𝑁1+1

𝑌𝑖 (𝑑)E
[
1
𝑛2𝑑

𝑛2𝑑
𝑁2

]
= 𝑌2(𝑑)

The second equality uses the fact that conditional on the draws in the first batch, the number of

treated units in the second batch is fixed and the third equality is based on the design of the second

batch.

Thus, we have

E[�̂�𝑠(𝑑,𝑑′)] =
(
𝑁1

𝑁

)
E[�̂�1(𝑑,𝑑′)] +

(
𝑁2

𝑁

)
E[�̂�2(𝑑,𝑑′)]

=

(
𝑁1

𝑁

) (
𝑌1(𝑑) − 𝑌1(𝑑′)

)
+
(
𝑁2

𝑁

) (
𝑌2(𝑑) − 𝑌2(𝑑′)

)
= 𝑌 (𝑑) − 𝑌 (𝑑′)

Note that this unbiasedness holds regardless of whether or not the treatment effect varies between

the two batches and the proof does not depend on the specific allocation in the second batch.

B.3 Variance

Let 𝜎2
1 (𝑑,𝑑′) = V[�̂�1(𝑑,𝑑′)] and 𝜎2

2 (𝑑,𝑑′) = V[�̂�2(𝑑,𝑑′) | D1] , where

𝜎2
2 (𝑑,𝑑′) =

𝑆22 (𝑑)
𝑛2𝑑

+
𝑆22 (𝑑′)
𝑛2𝑑′

−
𝑆22 (𝑑,𝑑′)

𝑁2
.

Using the law of total variance, we have

V[�̂�𝑠(𝑑,𝑑′)] = E
[
V
(̂
𝜏𝑠(𝑑,𝑑′) |D1

) ]
+ V

(
E
[̂
𝜏𝑠(𝑑,𝑑′) |D1

] )
= E

[
V

(
𝑁2

𝑁

(̂
𝜏2(𝑑,𝑑′)

)
|D1

)]
+ V

(
𝑁1

𝑁
�̂�1(𝑑,𝑑′) + E

[
𝑁2

𝑁
�̂�2(𝑑,𝑑′) |D1

] )
= E

[
𝑁2

2
𝑁2𝜎

2
2 (𝑑,𝑑′)

]
+ V

(
𝑁1

𝑁
�̂�1(𝑑,𝑑′)

)
=
𝑁2

2
𝑁2E

[
𝜎2
2 (𝑑,𝑑′)

]
+
𝑁2

1
𝑁2𝜎

2
1 (𝑑,𝑑′)
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Now, we can turn to the variance estimator. By the usual results on variance estimators in com-

pletely randomized designs and the law of iterated expectations, we have:

E
[
𝑉 [�̂�𝑠(𝑑,𝑑′)]

]
=

(
𝑁1

𝑁

)2 (𝑆21 (𝑑)
𝑁1𝑑

+
𝑆21 (𝑑′)
𝑁1𝑑′

)
+
(
𝑁2

𝑁

)2
E
[
E[V̂[�̂�2(𝑑,𝑑′)] | D1]

]
=

(
𝑁1

𝑁

)2 (𝑆21 (𝑑)
𝑁1𝑑

+
𝑆21 (𝑑′)
𝑁1𝑑′

)
+
(
𝑁2

𝑁

)2
E

[
𝑆22 (𝑑)
𝑛2𝑑

+
𝑆22 (𝑑′)
𝑛2𝑑′

]
.

Thus, the bias of our estimator is

E
[
𝑉 [�̂�𝑠(𝑑,𝑑′)]

]
− V[�̂�𝑠(𝑑,𝑑′)] =

(
𝑁1

𝑁

)2 𝑆21 (𝑑,𝑑′)
𝑁1𝑑 +𝑁1𝑑′

+
(
𝑁2

𝑁

)2
E

[
𝑆22 (𝑑,𝑑′)
𝑛2𝑑 + 𝑛2𝑑′

]
≥ 0

Thus, we can see that our variance estimator will be conservative in the sense that it has a positive bias

unless there is no variation in the treatment effect across units in which case the variance estimator

is unbiased.
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C Additional Simulation Results

C.1 Gaussian outcome

Here we present additional simulation results with Gaussian outcomes using either the full sample

or only the second batch to estimate effects, respectively.

Figure SM.3: Simulation results utilizing both batches, Gaussian outcome. Effects are estimated using the strat-
ified estimator. Panels differ horizontally by the size of the first batch and vertically by the total sample size.
The 𝑥-axis displays the ratio of the standard deviations of the outcome in the treatment and control conditions,
but note that overall variability of the outcome is constant. Colors indicate allocation scheme. The outcome
is power to detect the treatment effect. Instances where the initial batch size is greater than or equal to total
sample size are omitted. Estimated Neyman weights converge to Oracle Neyman weights at initial batch sizes
around 25–50 suggesting no need to allocate more than 50 units to the initial batch.
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Figure SM.4: Simulation results utilizing the second batch only, Gaussian outcome. Effects are estimated using
the traditional difference in means estimator since there is no longer dependence between units. Panels differ
horizontally by the size of the first batch and vertically by the total sample size. The 𝑥-axis displays the ratio of
the standard deviations of the outcome in the treatment and control conditions, but note that overall variability
of the outcome is constant. Colors indicate allocation scheme. The outcome is power to detect the treatment
effect. Instances where the initial batch size is greater than or equal to total sample size are omitted. Estimated
Neyman weights converge to Oracle Neyman weights at initial batch sizes around 25–50 suggesting no need to
allocate more than 50 units to the initial batch.
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C.2 Binary outcome

Here we present additional simulation results with binary outcomes. First, we display the impact

of additional observations at the grand mean before estimating Neyman weights as described in the

main text. Then, we investigate how power can be improved by the BANA design in the binary case.

Figures SM.7 and SM.8 display the power to detect the specified treatment effect of 0.1 under each of

the designs using either both the first and second batch or the second batch only respectively.
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Figure SM.5: Binary outcome simulation results. 𝑁 = 1, 000, 𝑅 = 30, 000. Horizontal panels differ by the size
of the first batch and vertical panels differ by the effect size, informed by the meta-analysis below. The 𝑥-axis
displays the probability of success in the control condition; note that unlike the Gaussian case, total variability
is not constant. Colors indicate allocation scheme relative to uniform. Minimum allocation to each condition
in the second batch is set to 0.1 and no additional observations were added to each condition in the first batch.
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Figure SM.6: Binary outcome simulation results. 𝑁 = 1, 000, 𝑅 = 30, 000. Horizontal panels differ by the size
of the first batch and vertical panels differ by the effect size, informed by the meta-analysis below. The 𝑥-axis
displays the probability of success in the control condition; note that unlike the Gaussian case, total variability
is not constant. Colors indicate allocation scheme relative to uniform. Minimum allocation to each condition
in the second batch is set to 0.1 and ten additional observations were added to each condition in the first batch.

35



Figure SM.7: Simulation results utilizing both batches, binary outcome. 𝑅 = 10, 000. Effects are estimated
using the stratified estimator. Panels differ horizontally by the size of the first batch and vertically by the total
sample size. The 𝑥-axis displays the probability of success in the control condition, with the probability of
success in treatment determined by a constant treatment effect of 0.1. Colors indicate allocation scheme. The
outcome is power to detect the treatment effect. Instances where the initial batch size is greater than or equal
to total sample size are omitted. Minimum allocation to each condition in the second batch is set to 0.1 and no
additional observations were added to each condition in the first batch.

36



Figure SM.8: Simulation results utilizing the second batch only, binary outcome. 𝑅 = 10, 000. Effects are
estimated using the traditional difference in means estimator since there is no longer dependence between
units. Panels differ horizontally by the size of the first batch and vertically by the total sample size. The 𝑥-
axis displays the probability of success in the control condition, with the probability of success in treatment
determined by a constant treatment effect of 0.1. Colors indicate allocation scheme. The outcome is power to
detect the treatment effect. Instances where the initial batch size is greater than or equal to total sample size are
omitted. Estimated Neyman weights converge to Oracle Neyman weights at initial batch sizes around 25-50
suggesting no need to allocate more than 50 units to the initial batch. Minimum allocation to each condition
in the second batch is set to 0.1 and no additional observations were added to each condition in the first batch.
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